Appendix A - Structural Depth: Gravity System Calculations

King Post Truss Members

Farquhar Park Aquatic Center
York, PA
Final Report

Member II

Steel Manual:
IHS $5 \frac{1}{2} \times 5 \frac{1}{2} \times \frac{1}{8}$ should work $\quad q^{16 / 14} \quad r=2.19^{\text {" }}$

$$
\begin{array}{lll}
\text { HES } 6 \times 6 \times \frac{1}{8}, & 9.85 \mathrm{lb} / \mathrm{ft}, & r=2.39^{\circ 1} \\
\text { HES } 7 \times 7 \times \frac{1}{8}, & 11.6 \mathrm{~B} / \mathrm{ft}, & r=2.80^{\circ}
\end{array}
$$

$$
\text { Iss } 7 \times 5 \times \frac{1}{8}, \text { should work, } 9.85^{16 / 84}, \quad r=2.07^{"}
$$

$$
\text { ISs } 8 \times 6 \times \frac{3}{16}, \quad 17.1 \quad 16 / \mathrm{ft}, \quad r=2.46^{\prime \prime}
$$

Member 13

Pipe 6. Std

$$
L=11.25^{\prime}
$$

$$
1+556.625 \times 0.125, \quad 8.62 \mathrm{lt} / 01, \quad r=2.30^{\circ 1}
$$

$$
\begin{aligned}
\frac{k k}{r} & <300200 \\
\frac{\left(11.25^{\prime}\right)(12)}{r} & <300200 \\
r & >0.675^{n}
\end{aligned}
$$

* \rightarrow Is it ok (docs it seem right) that hardly any forces in the diagonal web members?
Pipe 4 Std $\left.\backslash^{t=2.221^{\circ}}\right)$, $10.8^{16} / \mathrm{At}, r=1.51^{11}$

$$
\begin{aligned}
& \text { HSS } 4.000 \times 0.125, \quad 5.18^{14 / H A}, \quad r=1.37^{\circ} \\
& \text { HES } 2 \times 2 \times \frac{1}{8}, \quad 3.04^{16} / \mathrm{At}, \quad r=0.761^{\prime \prime} \\
& \text { HES } 4 \times 2 \times \frac{1}{8}, \quad 4.75^{18} / \mathrm{At}, \quad r=0.830^{\circ 1}
\end{aligned}
$$

Member 14

$$
\begin{aligned}
\frac{k L}{r} & <200 \\
\frac{\left(15^{\prime}\right)(12)}{r} & <200 \\
r & >0.90^{11}
\end{aligned}
$$

$$
\text { MSS } 2 \times 2 \times \frac{1}{8} \quad(3.04 \mathrm{lb} / \mathrm{ft})
$$

$$
\text { HES } 1.660 \times 0.140 \quad(2.27 \quad 16 /(4 t)
$$

$$
\begin{aligned}
& L=\sqrt{\left(32.5^{\prime}\right)^{2}+\left(11.25^{\prime}\right)^{2}}=34.39204^{1} \\
& 1.014^{k} \\
& \text { K } c=1.014^{k} \\
& \begin{array}{l}
\frac{\mathrm{KL}}{r}<300 \\
\frac{(34.3921)(12)}{r}<200
\end{array} \\
& r>1.375^{4} 2.0635^{\prime \prime}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Using the highest iss members: (mostly lightest) } \\
& \frac{\text { Members) }}{2,3,4,5} \frac{\text { Shape }}{H S 58 \times 8 \times \frac{1}{4}} \frac{16 / 14}{25.79} \frac{\text { length }}{321} \frac{\text { Weight (16) }}{825.28} 3301.12 \\
& \begin{array}{lllll}
7,10 & H S S 12 \times 12 \times \frac{1}{4} & 39.4 & 34.392^{1} & \text { H555.0448 } 2710.0896
\end{array} \\
& \begin{array}{lllll}
8,9 & H 5 S 12 \times 12 \times \frac{1}{4} & 39.4 & 32.7156^{\prime} & 2577.98928
\end{array} \\
& \begin{array}{lllll}
11,12 & \text { HuS } 5 \frac{1}{2} \times 5 \frac{1}{2} \times \frac{1}{8} & 9.0 & 34.392^{1} & 619.056
\end{array} \\
& \begin{array}{lllll}
13,15 & H S S \\
14 \times 2 \times \frac{1}{8} & 3.04 & 11.25^{1} & 68.4
\end{array} \\
& 14 \quad \begin{array}{llll}
& H S S \\
& 3.04 \times \frac{1}{8} & 15^{1} \quad \frac{45.6}{9322.25488} 16
\end{array} \\
& (5 \text { trusses })(9322.2548816)=46,611.274416 \\
& \begin{array}{l}
\text { * Not inducing bracing/diapliragn } \\
\text { members and columns }
\end{array} \\
& \text { * Do those trusses count as "king-post" trusses since they } \\
& \text { are arched? }
\end{aligned}
$$

Glulam Truss Members

Loads:

Dead Load:

Zinc Standing Seam Metal Roof Panels:
$1 / 2 "$ Moisture Resistant Gypsum Board:
$41 / 2 "$ Rigid Insulation $=(1.5 \mathrm{psf} / \mathrm{in}).(4.5 \mathrm{in}$.$) :$
Southern Pine 3 in. Decking:
TOTAL:
1.5 PSF
2.5 PSF
6.75 PSF
7.6 PSF
18.35 PSF

Say $=20 \mathrm{PSF}$
$\mathrm{D}_{\text {Total }}=20$ PSF +5 PSF $($ superimposed $)+5$ PSF $($ self weight of trusses $)=30$ PSF
*Applied to top chord of wood trusses (bottom of trusses is open to below; assuming superimposed loads are attached to top chord)
$\mathrm{L}_{\mathrm{r}}=20 \mathrm{PSF}$
$\mathrm{S}=23.1 \mathrm{PSF}$
${ }^{*} \mathrm{C}_{\mathrm{s}}=1.0$ for roof slopes less than 30 degrees
Load Combinations (ASD):
$\mathrm{D}=30 \mathrm{PSF}$
$\mathrm{D}+\mathrm{L}=20+0=20 \mathrm{PSF}$
$\mathrm{D}+\left(\mathrm{L}_{\mathrm{r}}\right.$ or S or R$)=\mathrm{D}+\mathrm{S}=30+23.1=53.1$ PSF
$\mathrm{D}+0.75 \mathrm{~L}+0.75\left(\mathrm{~L}_{\mathrm{r}}\right.$ or S or R$)=\mathrm{D}+0.75 \mathrm{~L}_{\mathrm{r}}=30 \mathrm{PSF}+(0.75)(20 \mathrm{PSF})=45 \mathrm{PSF}$
$\mathrm{D}+/-(\mathrm{W}$ or 0.7 E$)=\mathrm{D}=30$ PSF
$\mathrm{D}+0.75(\mathrm{~W}$ or 0.7 E$)+0.75 \mathrm{~L}+0.75\left(\mathrm{~L}_{\mathrm{r}}\right.$ or S or R$)=\mathrm{D}+0.75 \mathrm{~L}_{\mathrm{r}}$

$$
=30 \mathrm{PSF}+(0.75)(20 \mathrm{PSF})=45 \mathrm{PSF}
$$

$0.6 \mathrm{D}+/-(\mathrm{W}$ or 0.7 E$)=0.6 \mathrm{D}=(0.6)(30 \mathrm{PSF})=18 \mathrm{PSF}$
53.1 PSF controls for maximum load, but the load combination of $\mathrm{D}+\mathrm{S}$ may not necessarily control. It is important to look at other load combinations as well because the duration factor $\left(\mathrm{C}_{\mathrm{D}}\right)$ changes for other load combinations.

Load Combination: $D+S$
Members 13 and 22:
Load along roof slope:

$$
\begin{aligned}
& \mathrm{w}_{\mathrm{TL}}=\mathrm{w}_{\mathrm{D}}+\mathrm{w}_{\mathrm{S}}\left(\mathrm{~L}_{2} / \mathrm{L}_{1}\right) \\
& \mathrm{w}_{\mathrm{TL}}=30 \mathrm{PSF}+(23.1 \mathrm{PSF})\left(13^{\prime} / 15.0833 \prime\right)=49.9094 \mathrm{PSF} \\
& \mathrm{w}_{\mathrm{TL}}=(49.9094 \mathrm{PSF})\left(8^{\prime}\right)=399.2751381 \mathrm{lb} / \mathrm{ft}=0.3992751381 \mathrm{k} / \mathrm{ft}
\end{aligned}
$$

Members 14 and 21:
Load along roof slope:

$$
\begin{aligned}
& \mathrm{w}_{\mathrm{TL}}=\mathrm{w}_{\mathrm{D}}+\mathrm{w}_{\mathrm{S}}\left(\mathrm{~L}_{2} / \mathrm{L}_{1}\right) \\
& \mathrm{w}_{\mathrm{TL}}=30 \mathrm{PSF}+(23.1 \mathrm{PSF})\left(13^{\prime} / 14.1458^{\prime}\right)=51.22886598 \mathrm{PSF} \\
& \mathrm{w}_{\mathrm{TL}}=(51.22886598 \mathrm{PSF})\left(8^{\prime}\right)=409.8309278 \mathrm{lb} / \mathrm{ft}=0.4098309278 \mathrm{k} / \mathrm{ft}
\end{aligned}
$$

Members 15 and 20:

Load along roof slope:
$\mathrm{w}_{\mathrm{TL}}=\mathrm{w}_{\mathrm{D}}+\mathrm{w}_{\mathrm{S}}\left(\mathrm{L}_{2} / \mathrm{L}_{1}\right)$
$\mathrm{w}_{\mathrm{TL}}=30 \mathrm{PSF}+(23.1 \mathrm{PSF})\left(13^{\prime} / 13.546875^{\prime}\right)=52.16747405 \mathrm{PSF}$
$\mathrm{w}_{\mathrm{TL}}=(52.16747405 \mathrm{PSF})\left(8^{\prime}\right)=417.3397924 \mathrm{lb} / \mathrm{ft}=0.4173397924 \mathrm{k} / \mathrm{ft}$
Members 16 and 19:

Load along roof slope:
$\mathrm{w}_{\mathrm{TL}}=\mathrm{w}_{\mathrm{D}}+\mathrm{w}_{\mathrm{S}}\left(\mathrm{L}_{2} / \mathrm{L}_{1}\right)$
$\mathrm{w}_{\mathrm{TL}}=30 \mathrm{PSF}+(23.1 \mathrm{PSF})\left(13^{\prime} / 13.1875^{\prime}\right)=52.77156398 \mathrm{PSF}$
$\mathrm{w}_{\mathrm{TL}}=(52.77156398$ PSF $)\left(8^{\prime}\right)=422.1725118 \mathrm{lb} / \mathrm{ft}=0.4221725118 \mathrm{k} / \mathrm{ft}$
Members 17 and 18:
Load along roof slope:

$$
\begin{aligned}
& \mathrm{w}_{\mathrm{TL}}=\mathrm{w}_{\mathrm{D}}+\mathrm{w}_{\mathrm{S}}\left(\mathrm{~L}_{2} / \mathrm{L}_{1}\right) \\
& \mathrm{w}_{\mathrm{TL}}=30 \mathrm{PSF}+(23.1 \mathrm{PSF})\left(13^{\prime} / 13.0208^{\prime}\right)=53.06304 \mathrm{PSF} \\
& \mathrm{w}_{\mathrm{TL}}=(53.06304 \mathrm{PSF})\left(8^{\prime}\right)=424.50432 \mathrm{lb} / \mathrm{ft}=0.42450432 \mathrm{k} / \mathrm{ft}
\end{aligned}
$$

These loads were applied to models of the glulam truss in SAP, and the results were recorded. Results for other load combinations were obtained by taking fractions of the results from the $\mathrm{D}+\mathrm{S}$ load combination. For instance, since the dead load is ($30 \mathrm{psf} / 53.1$ psf), or 0.565 of the total load for the $\mathrm{D}+\mathrm{S}$ load combination, results for just dead load were obtained by multiplying the results from the $\mathrm{D}+\mathrm{S}$ load combination by 0.565 . This same process was carried out to obtain results from the live roof load by itself. See Tables \qquad - \qquad below for a summary of the results for each load combination. In the tables, axial and shear forces are in kips and moments are in ft-kips.

Jason Kukorlo
Structural Option
Dr. Linda M. Hanagan

Farquhar Park Aquatic Center
York, PA
Final Report

Axial Load, Shear, and Moment (Unfactored) for Wood Trusses											
		2 $\substack{\text { Bottom } \\ \text { Chord }}$ Chord	Bottom Chord	Bottom Chord	$\begin{gathered} \hline 5 \\ \text { Bottom } \\ \text { Chord } \end{gathered}$	Bottom Chord	$\begin{gathered} 19 \\ \text { Top } \\ \text { Chord } \end{gathered}$	$\begin{gathered} 20 \\ \text { Top } \\ \text { Chord } \end{gathered}$	$\begin{gathered} \hline 21 \\ \text { Top } \\ \text { Chord } \end{gathered}$	$\begin{gathered} 22 \\ \text { Top } \\ \text { Chord } \end{gathered}$	$\begin{gathered} 23 \\ \text { Top } \\ \text { Chord } \end{gathered}$
P_{D}	-16.14	24.62	24.62	25.18	25.55	25.73	-29.40	-28.03	-27.07	-26.38	-25.92
$\mathrm{P}_{\mathrm{D}, \text { воттом СноRD }}$	-5.20	7.98	7.98	8.20	8.35	8.43	-9.25	-8.92	-8.70	-8.55	-8.46
$\mathrm{P}_{\text {Lr }}$	-10.76	16.41	16.41	16.78	17.03	17.15	-19.60	-18.69	-18.05	-17.59	-17.28
$\mathrm{P}_{\text {S }}$	-12.43	18.95	18.95	19.39	19.67	19.81	-22.64	-21.58	-20.84	-20.31	-19.95
$\mathrm{P}_{\mathrm{w}, \text { lateral }}$	0.00	-3.24	-3.24	-3.24	-3.24	-3.24	0.00	0.00	0.00	0.00	0.00
Pw,uplift	8.90	-13.52	-13.52	-13.77	-13.94	-14.02	16.16	15.34	14.77	14.37	14.11
P_{E}	0.00	-4.27	-4.27	-4.27	-4.27	-4.27	0.00	0.00	0.00	0.00	0.00
V_{D} (Top or Left)	0.00	0.00	0.00	0.00	0.00	0.00	-1.47	-1.51	-1.53	-1.55	-1.56
V_{D} (Bottom or Right)	0.00	0.00	0.00	0.00	0.00	0.00	1.47	1.51	1.53	1.55	1.56
$\mathrm{V}_{\mathrm{D}, \mathrm{BO} \text { (tom с'HORD }}$ (Top or Left)	0.00	-0.52	-0.52	-0.52	-0.52	-0.52	0.00	0.00	0.00	0.00	0.00
$\mathrm{V}_{\mathrm{D}, \text { Bоттом СноRD }}$ (Bottom or Right)	0.00	0.52	0.52	0.52	0.52	0.52	0.00	0.00	0.00	0.00	0.00
$\mathrm{V}_{\text {Lr }}$ (Top or Left)	0.00	0.00	0.00	0.00	0.00	0.00	-0.98	-1.00	-1.02	-1.03	-1.04
$\mathrm{V}_{\text {Lr }}$ (Bottom or Right)	0.00	0.00	0.00	0.00	0.00	0.00	0.98	1.00	1.02	1.03	1.04
$\mathrm{V}_{\text {S }}$ (Top or Left)	0.00	0.00	0.00	0.00	0.00	0.00	-1.13	-1.16	-1.18	-1.19	-1.20
V_{S} (Bottom or Right)	0.00	0.00	0.00	0.00	0.00	0.00	1.13	1.16	1.18	1.19	1.20
$\mathrm{V}_{\mathrm{w}, \text { Lateral }}$ (Top or Left)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
$\mathrm{V}_{\text {w,LATERAL }}$ (Bottom or Right)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
$\mathrm{V}_{\text {w,UPLIFT }}$ (Top or Left)	0.00	0.00	0.00	0.00	0.00	0.00	0.84	0.84	0.84	0.84	0.84
$\mathrm{V}_{\text {w, UPLIFT }}$ (Bottom or Right)	0.00	0.00	0.00	0.00	0.00	0.00	-0.84	-0.84	-0.84	-0.84	-0.84
$\mathrm{V}_{\text {E }}$ (Top or Left)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
V_{E} (Bottom or Right)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
M_{D} (Max. Positive)	0.00	0.00	0.00	0.00	0.00	0.00	5.53	5.32	5.19	5.11	5.08
$\mathrm{M}_{\mathrm{D}, \mathrm{BO} \text { (tom сhord }}$ (Max. Positive)	0.00	1.66	1.66	1.66	1.66	1.66	0.00	0.00	0.00	0.00	0.00
M_{Lr} (Max. Positive)	0.00	0.00	0.00	0.00	0.00	0.00	3.68	3.55	3.46	3.41	3.38
M ${ }_{\text {S }}$ (Max. Positive)	0.00	0.00	0.00	0.00	0.00	0.00	4.25	4.10	4.00	3.94	3.91
M w,Lateral (Max. Positive)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
$\mathrm{M}_{\text {w,UPLIFT }}$ (Max. Positive)	0.00	0.00	0.00	0.00	0.00	0.00	-3.16	-2.97	-2.84	-2.77	-2.73
M_{E} (Max. Positive)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

D											
Max $\mathrm{V}_{\text {TOP/LEFT }}$ (kips)	0.00	-0.52	-0.52	-0.52	-0.52	-0.52	-1.47	-1.51	-1.53	-1.55	-1.56
Max $\mathrm{V}_{\text {BOTtomıRIGHT }}$ (kips)	0.00	0.52	0.52	0.52	0.52	0.52	1.47	1.51	1.53	1.55	1.56
Max M MIDSPAN (ft-kips)	0.00	1.66	1.66	1.66	1.66	1.66	5.53	5.32	5.19	5.11	5.08
Max P_{u} (kips)	-21.34	32.60	32.60	33.38	33.90	34.16	-38.65	-36.95	-35.77	-34.94	-34.38

D + Lr											
Max $\mathrm{V}_{\text {TOP/LEFT }}$ (kips)	0.00	-0.52	-0.52	-0.52	-0.52	-0.52	-2.44	-2.51	-2.56	-2.58	-2.60
Max $\mathrm{V}_{\text {воттом/RIGнt }}$ (kips)	0.00	0.52	0.52	0.52	0.52	0.52	2.44	2.51	2.56	2.58	2.60
Max M MIISPAN (ft-kips)	0.00	1.66	1.66	1.66	1.66	1.66	9.21	8.87	8.65	8.52	8.46
Max P_{u} (kips)	-32.10	49.01	49.01	50.16	50.93	51.31	-58.25	-55.63	-53.82	-52.52	-51.66

D + S											
Max $\mathrm{V}_{\text {TOP/LEFT }}$ (kips)	0.00	-0.52	-0.52	-0.52	-0.52	-0.52	-2.59	-2.66	-2.71	-2.74	-2.76
Max $\mathrm{V}_{\text {BOtTOMRIGHT }}$ (kips)	0.00	0.52	0.52	0.52	0.52	0.52	2.59	2.66	2.71	2.74	2.76
Max M MIISPPAN (ft-kips)	0.00	1.66	1.66	1.66	1.66	1.66	9.78	9.42	9.19	9.05	8.98
Max P_{u} (kips)	-33.76	51.55	51.55	52.76	53.57	53.97	-61.28	-58.53	-56.62	-55.25	-54.33

D +1- W											
Max $\mathrm{V}_{\text {TOP/LEFT }}$ (kips)	0.00	-0.52	-0.52	-0.52	-0.52	-0.52	-0.63	-0.67	-0.69	-0.71	-0.72
Max $\mathrm{V}_{\text {Bottomiright }}$ (kips)	0.00	0.52	0.52	0.52	0.52	0.52	0.63	0.67	0.69	0.71	0.72
Max M MIISPAN ($\mathrm{ft-kips)}$	0.00	1.66	1.66	1.66	1.66	1.66	2.37	2.36	2.35	2.35	2.34
Max P_{u} (kips)	-12.44	15.84	15.84	16.36	16.72	16.90	-22.49	-21.61	-21.00	-20.56	-20.27

Jason Kukorlo
Structural Option
Dr. Linda M. Hanagan
Farquhar Park Aquatic Center
York, PA
Final Report

D +/-E											
Max $\mathrm{V}_{\text {TOP/LEFT }}$ (kips)	0.00	-0.52	-0.52	-0.52	-0.52	-0.52	-1.47	-1.51	-1.53	-1.55	-1.56
Max $\mathrm{V}_{\text {воттом/RIG }}$ (kips)	0.00	0.52	0.52	0.52	0.52	0.52	1.47	1.51	1.53	1.55	1.56
Max M MIISPAN (ft-kips)	0.00	1.66	1.66	1.66	1.66	1.66	5.53	5.32	5.19	5.11	5.08
Max P_{u} (kips)	-21.34	28.32	28.32	29.11	29.63	29.89	-38.65	-36.95	-35.77	-34.94	-34.38

D + 0.75W + 0.75Lr											
Max $\mathrm{V}_{\text {TOP/LEFT }}$ (kips)	0.00	-0.52	-0.52	-0.52	-0.52	-0.52	-1.57	-1.63	-1.67	-1.70	-1.71
Max $\mathrm{V}_{\text {bottom/right }}$ (kips)	0.00	0.52	0.52	0.52	0.52	0.52	1.57	1.63	1.67	1.70	1.71
Max M MIDSPAN ($\mathrm{ft-kips)}$	0.00	1.66	1.66	1.66	1.66	1.66	5.92	5.76	5.66	5.60	5.56
Max P_{u} (kips)	-22.73	32.33	32.33	33.20	33.78	34.08	-41.23	-39.46	-38.23	-37.35	-36.75

D + 0.75W + 0.75S											
Max $\mathrm{V}_{\text {Top/LEFT }}$ (kips)	0.00	-0.52	-0.52	-0.52	-0.52	-0.52	-1.68	-1.74	-1.79	-1.82	-1.83
Max $\mathrm{V}_{\text {Bottomiright }}$ (kips)	0.00	0.52	0.52	0.52	0.52	0.52	1.68	1.74	1.79	1.82	1.83
Max M MIDSPAN (ft-kips)	0.00	1.66	1.66	1.66	1.66	1.66	6.35	6.17	6.06	5.99	5.96
Max Pu_{u} (kips)	-23.98	34.24	34.24	35.16	35.76	36.07	-43.50	-41.63	-40.33	-39.39	-38.76

0.6D + W											
Max $\mathrm{V}_{\text {TOP/LEFT }}$ (kips)	0.00	-0.31	-0.31	-0.31	-0.31	-0.31	-0.04	-0.06	-0.08	-0.09	-0.10
Max $\mathrm{V}_{\text {Bottomright }}$ (kips)	0.00	0.31	0.31	0.31	0.31	0.31	0.04	0.06	0.08	0.09	0.10
Max M MIDSPAN ($\mathrm{ft-kips)}$	0.00	0.99	0.99	0.99	0.99	0.99	0.16	0.23	0.27	0.30	0.31
Max P_{u} (kips)	-3.90	2.80	2.80	3.01	3.16	3.23	-7.03	-6.83	-6.69	-6.59	-6.52

Summary:

Summary of Maximum Forces, Moments, and Shears for West Column				
	Axial Force	Shear	Moment	C_{D}
D	-21.34	0.00	0.00	0.9
D + Lr	-32.10	0.00	0.00	1.0
D S	-33.76	0.00	0.00	1.15
D +/- W	-12.44	0.00	0.00	1.6
D +/- E	-21.34	0.00	0.00	1.6
D + 0.75W + 0.75Lr	-22.73	0.00	0.00	1.6
D + O.75W + 0.75S	-23.98	0.00	0.00	1.6
O.6D W W	-3.90	0.00	0.00	1.6

Summary of Maximum Forces, Moments, and Shears for Bottom Chord				
	Axial Force	Shear	Moment	C_{D}
D	34.16	0.52	1.66	0.9
D + Lr	51.31	0.52	1.66	1.0
D + S	53.97	0.52	1.66	1.15
D +/- W	16.90	0.52	1.66	1.6
D +/- E	29.89	0.52	1.66	1.6
D + 0.75W + 0.75Lr	34.08	0.52	1.66	1.6
D + O.75W + 0.75S	36.07	0.52	1.66	1.6
$0.6 D+W$	2.80	0.31	0.99	1.6

Summary of Maximum Forces, Moments, and Shears for Top Chord				
	Axial Force	Shear	Moment	C_{D}
D	-38.65	1.56	5.53	0.9
D + Lr	-58.25	2.60	9.21	1.0
D + S	-61.28	2.76	9.78	1.15
D $/-$ W	-22.49	0.72	2.37	1.6
D $/-$ E	-38.65	1.56	5.53	1.6
D $+0.75 W+0.75 L r$	-41.23	1.71	5.92	1.6
$D+0.75 W+0.75 S$	-43.50	1.83	6.35	1.6
$0.6 D+W$	-7.03	0.10	0.31	1.6

Units for Above Tables:

Axial Force: kips
Shear: kips
Moment: ft-kips

Wood Truss Member Design:

Top Chord: Combined Bending and Axial Forces (Member 6 is worst case)

Try 6 3/4" 9 5/8"
$F_{c}=2300$ psi (Glulam ID \#50, S.P.) (p. 66 NDS Supplement)
$\mathrm{F}_{\mathrm{b}}=2100$ psi (Glulam ID \#50, S.P.) (p. 66 NDS Supplement)
$\mathrm{A}=64.97 \mathrm{in}^{2}$
$S=104.2 \mathrm{in}^{3}$
$\mathrm{E}_{\text {min }}=980,000 \mathrm{psi}$

LOAD COMBINATION: D + S

Axial Load: $\mathrm{P}=61.284$ kips (Compression) (from SAP2000)
Maximum Moment $=9.779 \mathrm{ft}-\mathrm{kips}=117.342$ in-kips $($ from SAP2000 $)$
$\mathrm{L}=15^{\prime}-1^{\prime \prime}=15.0833^{\prime}$

Axial Load:
$f_{c}=P / A=61,284 \mathrm{lb} / 64.97 \mathrm{in}^{2}=943.266 \mathrm{psi}$
$\left(1_{\mathrm{e}} / \mathrm{d}\right)_{x}=[(15.0833 \prime)(12 \mathrm{in} / \mathrm{ft})] / 9.625^{\prime}=18.8052<50 \therefore$ OK
$\left(l_{e} / d\right)_{y}=0$ because of lateral support provided by roof diaphragm
$\left(l_{\mathrm{e}} / \mathrm{d}\right)_{\max }=\left(\mathrm{l}_{\mathrm{e}} / \mathrm{d}\right)_{\mathrm{x}}=18.8052$

The larger slenderness ratio governs the adjusted design value. Therefore, the strong axis of the member is critical, and $\left(l_{e} / d\right)_{x}$ is used to determine $F{ }_{c}$.
$F_{c}=2300$ psi (Glulam ID \#50, S.P.) (p. 66 NDS Supplement)
$\mathrm{E}_{\text {min }}=980,000 \mathrm{psi}$
$C_{D}=1.15$ (for snow load; load combination $D+S$)
$C_{M}=0.73$ for F_{c} (p. 64, NDS Supplement)
$C_{M}=0.833$ for E and $E_{\text {min }}$ (p. 64, NDS Supplement)
$C_{M}=0.8$ for F_{b} (p. 64, NDS Supplement)
$\mathrm{C}_{\mathrm{t}}=1.0$
$\mathrm{E}^{\prime}{ }_{\text {min }}=\left(\mathrm{E}_{\text {min }}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)=(980,000)(0.833)(1.0)=816,340 \mathrm{psi}$
$\mathrm{c}=0.9$ (glulam)
$\mathrm{F}_{\mathrm{cE}}=\left[0.822 \mathrm{E}^{\prime}{ }_{\text {min }}\right] /\left[(1 / \mathrm{d})^{2}\right]=[(0.822)(816,340 \mathrm{psi})] /\left[(18.8052)^{2}\right]=1897.524 \mathrm{psi}$
Here, $1_{e} / d$ is based on $\left(l_{e} / d\right)_{\text {max }}$.
$\mathrm{F}_{\mathrm{c}}{ }^{*}=\mathrm{F}_{\mathrm{c}}\left(\mathrm{C}_{\mathrm{D}}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)=(2300 \mathrm{psi})(1.15)(0.73)(1.0)=1930.85 \mathrm{psi}$
$\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}=1897.529 / 1930.85=0.9827$
$\left[1+\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}\right] /(2 \mathrm{c})=[1+0.9827] /[(2)(0.9)]=1.1015$
$\mathrm{C}_{\mathrm{P}}=\left\{\left[1+\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}\right] /(2 \mathrm{c})\right\}-\sqrt{ }\left\{\left[\left(1+\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}\right) /(2 \mathrm{c})\right]^{2}-\left[\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}\right] / \mathrm{c}\right\}$
$=\{1.1015\}-\sqrt{ }\left\{[1.1015]^{2}-[0.9827 / 0.9]\right\}$
$=1.1015-0.3485$
$=0.7531$
$\mathrm{F}^{\prime}{ }_{\mathrm{c}}=\mathrm{F}_{\mathrm{c}}{ }^{*}\left(\mathrm{C}_{\mathrm{P}}\right)=(1930.85 \mathrm{psi})(0.7531)=1454.068 \mathrm{psi}$
Axial stress ratio $=\mathrm{f}_{\mathrm{c}} / \mathrm{F}_{\mathrm{c}}{ }_{\mathrm{c}}=(943.266 \mathrm{psi}) /(1454.068 \mathrm{psi})=0.6487$

Net Section Check:

Assume connections will be made with (2) rows of $3 / 4$ " diameter bolts.
Assume the hole diameter is $1 / 16$ " larger than the bolt (for stress calculations only).

$$
\begin{gathered}
A_{n}=\left(6.75^{\prime \prime}\right)\left[9.625^{\prime \prime}-(2)\left(0.8125^{\prime \prime}\right)\right]=54 \mathrm{in}^{2} \\
\left(3 / 4 "+1 / 16^{\prime \prime}=0.8125^{\prime \prime}\right) \\
f_{c}=P / A_{n}=61,284 \mathrm{lb} / 54 \mathrm{in}^{2}=1134.889 \mathrm{psi}
\end{gathered}
$$

At braced location there is no reduction for stability.

$$
\begin{gathered}
\mathrm{F}_{\mathrm{c}}^{\prime}=\mathrm{F}_{\mathrm{c}}^{*}=\mathrm{F}_{\mathrm{c}}\left(\mathrm{C}_{\mathrm{D}}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)=(2300 \mathrm{psi})(1.15)(0.73)(1.0)=1930.85 \mathrm{psi} \\
1930.85 \mathrm{psi}>1134.889 \mathrm{psi} \therefore \text { OK }
\end{gathered}
$$

Bending:

Bending is about the strong axis of the cross section. The adjusted bending design value for a glulam is governed by the smaller of two criteria: volume effect or lateral stability. In this case,
the beam has full lateral support. Therefore, 1_{u} and R_{B} are zero and the lateral stability factor is $C_{L}=1.0$.
$\mathrm{M}=117.342$ in-kips $=117,342$ in-lb
$S=104.2$ in 3 (for $63 / 4$ " $\times 9$ 5/8")
$\mathrm{f}_{\mathrm{b}}=\mathrm{M} / \mathrm{S}=117,342 \mathrm{in}-\mathrm{lb} / 104.2 \mathrm{in}^{3}=1,126.123 \mathrm{psi}$
$\mathrm{F}^{\prime}{ }_{\mathrm{b}}=\mathrm{F}_{\mathrm{b}}\left(\mathrm{C}_{\mathrm{D}}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)\left(\mathrm{C}_{\mathrm{L}}\right)$ or
$\mathrm{F}^{\prime}{ }_{\mathrm{b}}=\mathrm{F}_{\mathrm{b}}\left(\mathrm{C}_{\mathrm{D}}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)\left(\mathrm{C}_{\mathrm{V}}\right)$
For Southern Pine glulam:

$$
\mathrm{C}_{\mathrm{V}}=\left(21^{\prime} / \mathrm{L}\right)^{1 / 20}\left(12^{\prime} / \mathrm{d}\right)^{1 / 20}\left(5.125^{\prime} / \mathrm{b}\right)^{1 / 20} \leq 1.0
$$

$$
\mathrm{C}_{\mathrm{V}}=\left(21^{\prime} / 15.0833^{\prime}\right)^{1 / 20}\left(12^{\prime \prime} / 9.625^{\prime \prime}\right)^{1 / 20}\left(5.125^{\prime \prime} / 6.75^{\prime \prime}\right)^{1 / 20} \leq 1.0
$$

$$
\mathrm{C}_{\mathrm{V}}=1.0139 \leq 1.0
$$

$$
\therefore \mathrm{C}_{\mathrm{V}}=1.0
$$

$\mathrm{F}^{\prime}{ }_{\mathrm{b}}=\mathrm{F}_{\mathrm{b}}\left(\mathrm{C}_{\mathrm{D}}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)\left(\mathrm{C}_{\mathrm{L}}\right.$ or $\left.\mathrm{C}_{\mathrm{V}}\right)=(2100 \mathrm{psi})(1.15)(0.8)(1.0)(1.0)=1932 \mathrm{psi}$
Bending stress ratio $=\mathrm{f}_{\mathrm{b}} / \mathrm{F}^{\prime}{ }_{\mathrm{b}}=1126.123 \mathrm{psi} / 1932 \mathrm{psi}=0.5829$

Combined Stresses:

The bending moment is about the strong axis of the cross section, and the amplification for $\mathrm{P}-\Delta$ is measured by the column slenderness ratio about the x axis.
$\left(l_{\mathrm{e}} / \mathrm{d}\right)_{\text {bending moment }}=\left(\mathrm{l}_{\mathrm{e}} / \mathrm{d}\right)_{\mathrm{x}}=18.80519481$
$\mathrm{F}_{\mathrm{cEx}}=\left[0.822 \mathrm{E}^{\prime}{ }_{\text {min }}\right] /\left[\left(\mathrm{l}_{\mathrm{e}} / \mathrm{d}\right)_{\mathrm{x}}\right]^{2}=[(0.822)(816,340 \mathrm{psi})] /\left[(18.8052)^{2}\right]=1897.524 \mathrm{psi}$
*Here, $\left(l_{\mathrm{e}} / \mathrm{d}\right)$ is based on the axis about which the bending moment occurs.
Amplification factor $=1 /\left[1-\left(\mathrm{f}_{\mathrm{c}} / \mathrm{F}_{\mathrm{cEx}}\right)\right]=1 /[1-(943.266 \mathrm{psi} / 1897.524 \mathrm{psi})]=1.9885$
$\left(\mathrm{f}_{\mathrm{c}} / \mathrm{F}^{\prime}{ }_{\mathrm{c}}\right)^{2}+\left\{1 /\left[1-\left(\mathrm{f}_{\mathrm{c}} / \mathrm{F}_{\mathrm{cEx}}\right)\right]\right\}\left(\mathrm{f}_{\mathrm{b}} / \mathrm{F}^{\prime}{ }_{\mathrm{b}}\right)=(0.6487)^{2}+(1.9885)(0.5829)=1.5799>1.0 \therefore$ N.G.

Try $63 / 4 " \times 11$ "

$\mathrm{F}_{\mathrm{c}}=2300 \mathrm{psi}$ (Glulam ID \#50, S.P.) (p. 66 NDS Supplement)
$\mathrm{F}_{\mathrm{b}}=2100 \mathrm{psi}$ (Glulam ID \#50, S.P.) (p. 66 NDS Supplement)
$\mathrm{A}=74.25 \mathrm{in}^{2}$
$\mathrm{S}=136.1 \mathrm{in}^{3}$
$\mathrm{E}_{\text {min }}=980,000 \mathrm{psi}$

LOAD COMBINATION: D + S

Axial Load: $\mathrm{P}=61.284$ kips (Compression) (from SAP2000)
Maximum Moment $=9.779 \mathrm{ft}$-kips $=117.342$ in-kips $($ from SAP2000 $)$
$\mathrm{L}=15^{\prime}-1 "=15.083333^{\prime}$
Axial Load:
$\mathrm{f}_{\mathrm{c}}=\mathrm{P} / \mathrm{A}=61,284 \mathrm{lb} / 74.25 \mathrm{in}^{2}=825.374 \mathrm{psi}$
$\left(\mathrm{l}_{\mathrm{e}} / \mathrm{d}\right)_{\mathrm{x}}=\left[\left(15.0833^{\prime}\right)(12 \mathrm{in} / \mathrm{ft})\right] / 11^{\prime \prime}=16.4545<50 \therefore \mathrm{OK}$
$\left(1_{e} / d\right)_{y}=0$ because of lateral support provided by roof diaphragm
$\left(l_{e} / d\right)_{\max }=\left(l_{e} / d\right)_{x}=16.4545$
The larger slenderness ratio governs the adjust design value. Therefore, the strong axis of the member is critical, and $\left(l_{e} / \mathrm{d}\right)_{\mathrm{x}}$ is used to determine $\mathrm{F}^{\prime}{ }_{\mathrm{c}}$.
$\mathrm{F}_{\mathrm{cE}}=\left[0.822 \mathrm{E}^{\prime}{ }_{\text {min }}\right] /\left[\left(\mathrm{l}_{\mathrm{e}} / \mathrm{d}\right)^{2}\right]=[(0.822)(816,340 \mathrm{psi})] /\left[(16.4545)^{2}\right]=2478.398 \mathrm{psi}$
Here, $l_{\mathrm{e}} / \mathrm{d}$ is based on $\left(l_{e} / \mathrm{d}\right)_{\text {max }}$.
$\mathrm{F}_{\mathrm{c}}{ }^{*}=\mathrm{F}_{\mathrm{c}}\left(\mathrm{C}_{\mathrm{D}}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)=(2300 \mathrm{psi})(1.15)(0.73)(1.0)=1930.85 \mathrm{psi}$
$\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}=2478.398 / 1930.85=1.2836$
$\left[1+\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}\right] /(2 \mathrm{c})=[1+1.2836] /[(2)(0.9)]=1.2687$
$\mathrm{C}_{\mathrm{P}}=\left\{\left[1+\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}\right] /(2 \mathrm{c})\right\}-\sqrt{ }\left\{\left[\left(1+\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}\right) /(2 \mathrm{c})\right]^{2}-\left[\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}\right] / \mathrm{c}\right\}$
$=\{1.2687\}-\sqrt{ }\left\{[1.2687]^{2}-[1.2836 / 0.9]\right\}$
$=1.2687-0.4281$
$=0.8405$
$\mathrm{F}^{\prime}{ }_{\mathrm{c}}=\mathrm{F}_{\mathrm{c}}{ }^{*}\left(\mathrm{C}_{\mathrm{P}}\right)=(1930.85 \mathrm{psi})(0.8405)=1622.947 \mathrm{psi}>825.374 \mathrm{psi} \therefore \mathrm{OK}$
Axial stress ratio $=\mathrm{f}_{\mathrm{c}} / \mathrm{F}^{\prime}{ }_{\mathrm{c}}=825.374 / 1622.9472=0.5086$
Net Section Check:
Assume connections will be made with (2) rows of $3 / 4$ " diameter bolts.

Assume the hole diameter is $1 / 16$ " larger than the bolt (for stress calculations only).
$A_{n}=\left(6.75^{\prime \prime}\right)\left[11^{\prime \prime}-(2)\left(0.8125^{\prime \prime}\right)\right]=63.281 \mathrm{in}^{2}$
$\left(3 / 4 "+1 / 16^{\prime \prime}=0.8125^{\prime \prime}\right)$
$f_{c}=P / A_{n}=61,284 \mathrm{lb} / 63.281 \mathrm{in}^{2}=968.442 \mathrm{psi}$

At braced location there is no reduction for stability.
$\mathrm{F}^{\prime}{ }_{\mathrm{c}}=\mathrm{F}_{\mathrm{c}}{ }^{*}=\mathrm{F}_{\mathrm{c}}\left(\mathrm{C}_{\mathrm{D}}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)=(2300 \mathrm{psi})(1.15)(0.73)(1.0)=1930.85 \mathrm{psi}$
$1930.85 \mathrm{psi}>968.442$ psi \therefore OK

Bending:

Bending is about the strong axis of the cross section. The adjusted bending design value for a glulam is governed by the smaller of two criteria: volume effect or lateral stability. In this case, the beam has full lateral support. Therefore, l_{u} and R_{B} are zero and the lateral stability factor is $\mathrm{C}_{\mathrm{L}}=1.0$.
$\mathrm{M}=117.342$ in-kips $=117,342$ in-lb
$\mathrm{S}=136.1 \mathrm{in}^{3}$
$\mathrm{f}_{\mathrm{b}}=\mathrm{M} / \mathrm{S}=117,342 \mathrm{in}-\mathrm{lb} / 136.1 \mathrm{in}^{3}=862.175 \mathrm{psi}$
$\mathrm{F}^{\prime}{ }_{\mathrm{b}}=\mathrm{F}_{\mathrm{b}}\left(\mathrm{C}_{\mathrm{D}}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)\left(\mathrm{C}_{\mathrm{L}}\right)$ or
$\mathrm{F}^{\prime}{ }_{\mathrm{b}}=\mathrm{F}_{\mathrm{b}}\left(\mathrm{C}_{\mathrm{D}}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)\left(\mathrm{C}_{\mathrm{V}}\right)$
For Southern Pine glulam:

$$
\begin{aligned}
& \quad \mathrm{C}_{\mathrm{V}}=(21 ' / \mathrm{L})^{1 / 20}\left(12^{\prime \prime} / \mathrm{d}\right)^{1 / 20}\left(5.125^{\prime \prime} / \mathrm{b}\right)^{1 / 20} \leq 1.0 \\
& \mathrm{C}_{\mathrm{V}}=\left(21^{\prime} / 15.0833^{\prime}\right)^{1 / 20}\left(12^{\prime \prime} / 11^{\prime \prime}\right)^{1 / 20}\left(5.125{ }^{\prime \prime} / 6.75^{\prime \prime}\right)^{1 / 20} \leq 1.0 \\
& \mathrm{C}_{\mathrm{V}}=1.0072 \leq 1.0 \\
& \therefore \mathrm{C}_{\mathrm{V}}=1.0 \\
& \mathrm{~F}_{\mathrm{b}}^{\prime}=\mathrm{F}_{\mathrm{b}}\left(\mathrm{C}_{\mathrm{D}}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)\left(\mathrm{C}_{\mathrm{L}} \text { or } \mathrm{C}_{\mathrm{V}}\right)=(2100 \mathrm{psi})(1.15)(0.8)(1.0)(1.0)=1932 \mathrm{psi} \\
& \text { Bending stress ratio }=\mathrm{f}_{\mathrm{b}} / \mathrm{F}_{\mathrm{b}}=862.175 / 1932=0.4463 \\
& \text { Combined Stresses: }
\end{aligned}
$$

The bending moment is about the strong axis of the cross section, and the amplification for $\mathrm{P}-\Delta$ is measured by the column slenderness ratio about the x axis.
$\left(l_{\mathrm{e}} / \mathrm{d}\right)_{\text {bending moment }}=\left(l_{\mathrm{e}} / \mathrm{d}\right)_{\mathrm{x}}=16.4545$
$\mathrm{F}_{\mathrm{cEx}}=\left[0.822 \mathrm{E}^{\prime}{ }_{\text {min }}\right] /\left[\left(\mathrm{l}_{\mathrm{e}} / \mathrm{d}\right)_{\mathrm{x}}\right]^{2}=[(0.822)(816,340 \mathrm{psi})] /\left[(16.4545)^{2}\right]=2478.398 \mathrm{psi}$
*Here, $\left(l_{\mathrm{e}} / \mathrm{d}\right)$ is based on the axis about which the bending moment occurs.
Amplification factor $=1 /\left[1-\left(\mathrm{f}_{\mathrm{c}} / \mathrm{F}_{\mathrm{cEx}}\right)\right]=1 /[1-(968.442 / 2478.398)]=1.6414$
$\left(\mathrm{f}_{\mathrm{c}} / \mathrm{F}^{\prime}{ }_{\mathrm{c}}\right)^{2}+\left\{1 /\left[1-\left(\mathrm{f}_{\mathrm{c}} / \mathrm{F}_{\mathrm{cEx}}\right)\right]\right\}\left(\mathrm{f}_{\mathrm{b}} / \mathrm{F}^{\prime}{ }_{\mathrm{b}}\right)=(0.5086)^{2}+(1.6414)(0.4463)=0.9912<1.0 \therefore \mathrm{OK}$

To be a little more conservative, use a slightly larger member.
Check Shear:
$\mathrm{f}_{\mathrm{v}}=1.5(\mathrm{~V} / \mathrm{A})=(1.5)\left[(2759 \mathrm{lb}) /\left(74.25 \mathrm{in}^{2}\right)=37.158 \mathrm{psi}\right.$
$\mathrm{F}_{\mathrm{v}}=300 \mathrm{psi}$
$\mathrm{F}^{\prime}{ }_{\mathrm{v}}=\mathrm{F}_{\mathrm{v}}\left(\mathrm{C}_{\mathrm{D}}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)=(300 \mathrm{psi})(1.15)(0.875)(1.0)=301.875 \mathrm{psi}>37.158 \mathrm{psi} \therefore$ OK
Try 6 3/4" $\times 12$ 3/8"
$\mathrm{F}_{\mathrm{c}}=2300 \mathrm{psi}$ (Glulam ID \#50, S.P.) (p. 66 NDS Supplement)
$\mathrm{F}_{\mathrm{b}}=2100 \mathrm{psi}$ (Glulam ID \#50, S.P.) (p. 66 NDS Supplement)
$\mathrm{A}=83.53 \mathrm{in}^{2}$
$S=172.3 \mathrm{in}^{3}$
$\mathrm{E}_{\text {min }}=980,000 \mathrm{psi}$
Load Combination: $D+S$

Axial Load: $\mathrm{P}=61.284$ kips (Compression) (from SAP2000)

Maximum Moment $=9.779 \mathrm{ft}-\mathrm{kips}=117.342$ in-kips $($ from SAP2000 $)$
$\mathrm{L}=15^{\prime}-1 "=15.083333^{\prime}$

Axial Load:
$\mathrm{f}_{\mathrm{c}}=\mathrm{P} / \mathrm{A}=61,284 \mathrm{lb} / 83.53 \mathrm{in}^{2}=733.677 \mathrm{psi}$
$\left(l_{\mathrm{e}} / \mathrm{d}\right)_{x}=[(15.0833 \prime)(12 \mathrm{in} / \mathrm{ft})] / 12.375^{\prime \prime}=14.6263<50 \therefore$ OK
$\left(l_{e} / d\right)_{y}=0$ because of lateral support provided by roof diaphragm
$\left(l_{\mathrm{e}} / \mathrm{d}\right)_{\max }=\left(\mathrm{l}_{\mathrm{e}} / \mathrm{d}\right)_{\mathrm{x}}=14.6263$

The larger slenderness ratio governs the adjust design value. Therefore, the strong axis of the member is critical, and $\left(l_{e} / d\right)_{x}$ is used to determine F ' ${ }_{c}$.
$\mathrm{E}_{\text {min }}=816,340 \mathrm{psi}$
$\mathrm{c}=0.9$ (glulam)
$\mathrm{F}_{\mathrm{cE}}=\left[0.822 \mathrm{E}^{\prime}{ }_{\text {min }}\right] /\left[\left(\mathrm{l}_{\mathrm{e}} / \mathrm{d}\right)^{2}\right]=[(0.822)(816,340 \mathrm{psi})] /\left[(14.6263)^{2}\right]=3136.723 \mathrm{psi}$

Here, l_{e} / d is based on $\left(l_{e} / d\right)_{\max }$.
$\mathrm{F}_{\mathrm{c}}{ }^{*}=\mathrm{F}_{\mathrm{c}}\left(\mathrm{C}_{\mathrm{D}}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)=(2300 \mathrm{psi})(1.15)(0.73)(1.0)=1930.85 \mathrm{psi}$
$\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}=3136.7229 / 1930.85=1.6245$
$\left[1+\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}\right] /(2 \mathrm{c})=[1+1.6245] /[(2)(0.9)]=1.4581$
$\mathrm{C}_{\mathrm{P}}=\left\{\left[1+\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}\right] /(2 \mathrm{c})\right\}-\sqrt{ }\left\{\left[\left(1+\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}\right) /(2 \mathrm{c})\right]^{2}-\left[\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}\right] / \mathrm{c}\right\}$
$=\{1.4581\}-\sqrt{ }\left\{[1.4581]^{2}-[1.6245 / 0.9]\right\}$
$=1.4581-0.5665$
$=0.8916$
$\mathrm{F}^{\prime}{ }_{\mathrm{c}}=\mathrm{F}_{\mathrm{c}}{ }^{*}\left(\mathrm{C}_{\mathrm{P}}\right)=(1930.85 \mathrm{psi})(0.8916)=1721.460 \mathrm{psi}>733.677 \therefore \mathrm{OK}$
Axial stress ratio $=f_{c} / F^{\prime}{ }_{c}=733.677 / 1721.460=0.4262$

Net Section Check:

Assume connections will be made with (2) rows of $3 / 4$ " diameter bolts.
Assume the hole diameter is $1 / 16 "$ larger than the bolt (for stress calculations only).

$$
\begin{gathered}
A_{n}=\left(6.75^{\prime \prime}\right)\left[12.375^{\prime \prime}-(2)\left(0.8125^{\prime \prime}\right)\right]=72.5625 \mathrm{in}^{2} \\
\quad\left(3 / 4 "+1 / 16^{\prime \prime}=0.8125^{\prime \prime}\right) \\
f_{c}=P / A_{n}=61,284 \mathrm{lb} / 72.5625 \mathrm{in}^{2}=844.568 \mathrm{psi}
\end{gathered}
$$

At braced location there is no reduction for stability.

$$
\begin{gathered}
\mathrm{F}_{\mathrm{c}}^{\prime}=\mathrm{F}_{\mathrm{c}}^{*}=\mathrm{F}_{\mathrm{c}}\left(\mathrm{C}_{\mathrm{D}}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)=(2300 \mathrm{psi})(1.15)(0.73)(1.0)=1930.85 \mathrm{psi} \\
1930.85 \mathrm{psi}>844.568 \mathrm{psi} \therefore \text { OK }
\end{gathered}
$$

Bending:

Bending is about the strong axis of the cross section. The adjusted bending design value for a glulam is governed by the smaller of two criteria: volume effect or lateral stability. In this case,
the beam has full lateral support. Therefore, 1_{u} and R_{B} are zero and the lateral stability factor is $C_{L}=1.0$.
$\mathrm{M}=117.342$ in-kips $=117,342$ in-lb
$S=172.3 \mathrm{in}^{3}$
$\mathrm{f}_{\mathrm{b}}=\mathrm{M} / \mathrm{S}=117,342 \mathrm{in}-\mathrm{lb} / 172.3 \mathrm{in}^{3}=681.033 \mathrm{psi}$
$F^{\prime}{ }_{b}=F_{b}\left(C_{D}\right)\left(C_{M}\right)\left(C_{t}\right)\left(C_{L}\right)$ or
$\mathrm{F}^{\prime}{ }_{\mathrm{b}}=\mathrm{F}_{\mathrm{b}}\left(\mathrm{C}_{\mathrm{D}}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)\left(\mathrm{C}_{\mathrm{V}}\right)$
For Southern Pine glulam:

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{V}}=\left(21^{\prime} / \mathrm{L}\right)^{1 / 20}\left(12^{\prime \prime} / \mathrm{d}\right)^{1 / 20}\left(5.125^{\prime \prime} / \mathrm{b}\right)^{1 / 20} \leq 1.0 \\
& \mathrm{C}_{\mathrm{V}}=\left(21^{\prime} / 15.0833^{\prime}\right)^{1 / 20}\left(12^{\prime \prime} / 12.375^{\prime \prime}\right)^{1 / 20}\left(5.125 " / 6.75^{\prime \prime}\right)^{1 / 20} \leq 1.0 \\
& \mathrm{C}_{\mathrm{V}}=1.0012 \leq 1.0 \\
& \therefore \mathrm{C}_{\mathrm{V}}=1.0 \\
& \mathrm{~F}_{\mathrm{b}}=\mathrm{F}_{\mathrm{b}}\left(\mathrm{C}_{\mathrm{D}}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)\left(\mathrm{C}_{\mathrm{L}} \text { or } \mathrm{C}_{\mathrm{V}}\right)=(2100 \mathrm{psi})(1.15)(0.8)(1.0)(1.0)=1932 \mathrm{psi} \\
& >681.033 \mathrm{psi} \therefore \mathrm{OK} \\
& \text { Bending stress ratio }=\mathrm{f}_{\mathrm{b}} / \mathrm{F}_{\mathrm{b}}=681.033 / 1932=0.3525 \\
& \text { Combined Stresses: }
\end{aligned}
$$

The bending moment is about the strong axis of the cross section, and the amplification for $\mathrm{P}-\Delta$ is measured by the column slenderness ratio about the x axis.
$\left(l_{\mathrm{e}} / \mathrm{d}\right)_{\text {bending moment }}=\left(l_{\mathrm{e}} / \mathrm{d}\right)_{\mathrm{x}}=14.62626263$
$\mathrm{F}_{\mathrm{cEx}}=\left[0.822 \mathrm{E}^{\prime}{ }_{\text {min }}\right] /\left[\left(\mathrm{l}_{\mathrm{e}} / \mathrm{d}\right)_{\mathrm{x}}\right]^{2}=[(0.822)(816,340 \mathrm{psi})] /\left[(14.6262)^{2}\right]=3136.723 \mathrm{psi}$
*Here, $\left(l_{\mathrm{e}} / \mathrm{d}\right)$ is based on the axis about which the bending moment occurs.

Amplification factor $=1 /\left[1-\left(\mathrm{f}_{\mathrm{c}} / \mathrm{F}_{\mathrm{cEx}}\right)\right]=1 /[1-(733.677 / 3136.723)]=1.3053$
$\left(\mathrm{f}_{\mathrm{c}} / \mathrm{F}^{\prime}{ }_{\mathrm{c}}\right)^{2}+\left\{1 /\left[1-\left(\mathrm{f}_{\mathrm{c}} / \mathrm{F}_{\mathrm{cEx}}\right)\right]\right\}\left(\mathrm{f}_{\mathrm{b}} / \mathrm{F}^{\prime}{ }_{\mathrm{b}}\right)=(0.4262)^{2}+(1.3053)(0.3525)=0.6418<1.0 \therefore \mathrm{OK}$
Check Shear:
$\mathrm{f}_{\mathrm{v}}=1.5(\mathrm{~V} / \mathrm{A})=(1.5)\left[(2759 \mathrm{lb}) /\left(83.53 \mathrm{in}^{2}\right)=49.545 \mathrm{psi}\right.$
$\mathrm{F}_{\mathrm{v}}=300 \mathrm{psi}$
$\mathrm{F}^{\prime}{ }_{\mathrm{v}}=\mathrm{F}_{\mathrm{v}}\left(\mathrm{C}_{\mathrm{D}}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)=(300 \mathrm{psi})(1.15)(0.875)(1.0)=301.875 \mathrm{psi}>49.545 \mathrm{psi} \therefore$ OK
USE 6 3/4" x 12 3/8"

LOAD COMBINATIOIN: $D+L_{r}$

Try 6 3/4" $\times 12$ 3/8"
$\mathrm{F}_{\mathrm{c}}=2300 \mathrm{psi}$ (Glulam ID \#50, S.P.) (p. 66 NDS Supplement)
$\mathrm{F}_{\mathrm{b}}=2100 \mathrm{psi}$ (Glulam ID \#50, S.P.) (p. 66 NDS Supplement)
$\mathrm{A}=83.53 \mathrm{in}^{2}$
$\mathrm{S}=172.3 \mathrm{in}^{3}$
$\mathrm{E}_{\text {min }}=980,000 \mathrm{psi}$

Axial Load: $\mathrm{P}=58.247$ kips (Compression)
Maximum Moment $=9.208$ ft-kips $=110.496$ in-kips
$\mathrm{L}=15^{\prime}-1 "=15.083333^{\prime}$
Axial Load:
$\mathrm{f}_{\mathrm{c}}=\mathrm{P} / \mathrm{A}=58,247 \mathrm{lb} / 83.53 \mathrm{in}^{2}=697.318 \mathrm{psi}$
$\left(\mathrm{l}_{\mathrm{e}} / \mathrm{d}\right)_{\mathrm{x}}=\left[\left(15.0833^{\prime}\right)(12 \mathrm{in} / \mathrm{ft})\right] / 12.375^{\prime \prime}=14.6263<50 \therefore$ OK
$\left(l_{e} / d\right)_{y}=0$ because of lateral support provided by roof diaphragm
$\left(l_{\mathrm{e}} / \mathrm{d}\right)_{\max }=\left(\mathrm{l}_{\mathrm{e}} / \mathrm{d}\right)_{\mathrm{x}}=14.6263$

The larger slenderness ratio governs the adjust design value. Therefore, the strong axis of the member is critical, and $\left(l_{e} / d\right)_{x}$ is used to determine F ' ${ }_{c}$.
$\mathrm{F}_{\mathrm{c}}=2300 \mathrm{psi}$ (Glulam ID \#50, S.P.) (p. 66 NDS Supplement)
$\mathrm{E}_{\text {min }}=980,000 \mathrm{psi}$
$\mathrm{C}_{\mathrm{D}}=1.0$ (for live load; load combination $\mathrm{D}+\mathrm{L}_{\mathrm{r}}$)
$C_{M}=0.73$ for F_{c} (p. 64, NDS Supplement)
$C_{M}=0.833$ for E and $E_{\text {min }}$ (p. 64, NDS Supplement)
$C_{M}=0.8$ for $F_{b}(p .64$, NDS Supplement $)$
$\mathrm{C}_{\mathrm{t}}=1.0$

$$
\mathrm{F}_{\mathrm{c}}^{\prime}=\mathrm{F}_{\mathrm{c}}^{*}\left(\mathrm{C}_{\mathrm{P}}\right)=(1679 \mathrm{psi})(0.9128)=1532.579 \mathrm{psi}>697.318 \mathrm{psi} \therefore \mathrm{OK}
$$

Axial stress ratio $=\mathrm{f}_{\mathrm{c}} / \mathrm{F}^{\prime}{ }_{\mathrm{c}}=697.318 / 1532.579=0.4550$

Net Section Check:

Assume connections will be made with (2) rows of $3 / 4$ " diameter bolts.
Assume the hole diameter is $1 / 16$ " larger than the bolt (for stress calculations only).

$$
\begin{aligned}
& \mathrm{A}_{\mathrm{n}}=\left(6.75^{\prime \prime}\right)\left[12.375^{\prime \prime}-(2)\left(0.8125^{\prime \prime}\right)\right]=72.5625 \mathrm{in}^{2} \\
& \quad\left(3 / 4 "+1 / 16^{\prime \prime}=0.8125^{\prime \prime}\right) \\
& \mathrm{f}_{\mathrm{c}}=\mathrm{P} / \mathrm{A}_{\mathrm{n}}=58,247 \mathrm{lb} / 72.5625 \mathrm{in}^{2}=802.715 \mathrm{psi}
\end{aligned}
$$

At braced location there is no reduction for stability.

$$
\begin{gathered}
\mathrm{F}_{\mathrm{c}}=\mathrm{F}_{\mathrm{c}}^{*}=\mathrm{F}_{\mathrm{c}}\left(\mathrm{C}_{\mathrm{D}}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)=(2300 \mathrm{psi})(1.0)(0.73)(1.0)=1679 \mathrm{psi} \\
1679 \mathrm{psi}>802.715 \mathrm{psi} \therefore \mathrm{OK}
\end{gathered}
$$

Bending:

Bending is about the strong axis of the cross section. The adjusted bending design value for a glulam is governed by the smaller of two criteria: volume effect or lateral stability. In this case, the beam has full lateral support. Therefore, 1_{u} and R_{B} are zero and the lateral stability factor is $\mathrm{C}_{\mathrm{L}}=1.0$.

$$
\begin{aligned}
& \mathrm{E}^{\prime}{ }_{\text {min }}=\left(\mathrm{E}_{\text {min }}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)=(980,000)(0.833)(1.0)=816,340 \mathrm{psi} \\
& \mathrm{c}=0.9 \text { (glulam) } \\
& \mathrm{F}_{\mathrm{cE}}=\left[0.822 \mathrm{E}{ }^{\prime}{ }_{\text {min }}\right] /\left[(1 / \mathrm{d})^{2}\right]=[(0.822)(816,340 \mathrm{psi})] /\left[(14.6263)^{2}\right]=3136.723 \mathrm{psi} \\
& \text { Here, } l_{\mathrm{e}} / \mathrm{d} \text { is based on }\left(\mathrm{l}_{\mathrm{e}} / \mathrm{d}\right)_{\text {max }} \text {. } \\
& \mathrm{F}_{\mathrm{c}}{ }^{*}=\mathrm{F}_{\mathrm{c}}\left(\mathrm{C}_{\mathrm{D}}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)=(2300 \mathrm{psi})(1.0)(0.73)(1.0)=1679 \mathrm{psi} \\
& \mathrm{~F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}=3136.723 / 1679=1.8682 \\
& {\left[1+\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}\right] /(2 \mathrm{c})=[1+1.8682] /[(2)(0.9)]=1.5934} \\
& \mathrm{C}_{\mathrm{P}}=\left\{\left[1+\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}\right] /(2 \mathrm{c})\right\}-\sqrt{ }\left\{\left[\left(1+\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}\right) /(2 \mathrm{c})\right]^{2}-\left[\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}\right] / \mathrm{c}\right\} \\
& =\{1.5934\}-\sqrt{ }\left\{[1.5934]^{2}-[1.8682 / 0.9]\right\} \\
& =1.5934-0.6807 \\
& =0.9128
\end{aligned}
$$

$\mathrm{M}=110.496$ in-kips $=110,496 \mathrm{in}-\mathrm{lb}$
$\mathrm{S}=172.3 \mathrm{in}^{3}$
$\mathrm{f}_{\mathrm{b}}=\mathrm{M} / \mathrm{S}=110,496 \mathrm{in}-\mathrm{lb} / 172.3 \mathrm{in}^{3}=641.300 \mathrm{psi}$
$\mathrm{F}_{\mathrm{b}}=\mathrm{F}_{\mathrm{b}}\left(\mathrm{C}_{\mathrm{D}}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)\left(\mathrm{C}_{\mathrm{L}}\right)$ or
$\mathrm{F}_{\mathrm{b}}{ }^{\prime}=\mathrm{F}_{\mathrm{b}}\left(\mathrm{C}_{\mathrm{D}}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)\left(\mathrm{C}_{\mathrm{V}}\right)$
For Southern Pine glulam:

$$
\begin{aligned}
& \quad \mathrm{C}_{\mathrm{V}}=\left(21^{\prime} / \mathrm{L}\right)^{1 / 20}\left(12^{\prime \prime} / \mathrm{d}\right)^{1 / 20}\left(5.125^{\prime \prime} / \mathrm{b}\right)^{1 / 20} \leq 1.0 \\
& \mathrm{C}_{\mathrm{V}}=\left(21^{\prime} / 15.0833^{\prime}\right)^{1 / 20}\left(12^{\prime \prime} / 12.375^{\prime \prime}\right)^{1 / 20}\left(5.125^{\prime \prime} / 6.75^{\prime \prime}\right)^{1 / 20} \leq 1.0 \\
& \mathrm{C}_{\mathrm{V}}=1.0012 \leq 1.0 \\
& \therefore \mathrm{C}_{\mathrm{V}}=1.0 \\
& \mathrm{~F}_{\mathrm{b}}=\mathrm{F}_{\mathrm{b}}\left(\mathrm{C}_{\mathrm{D}}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)\left(\mathrm{C}_{\mathrm{L}} \text { or } \mathrm{C}_{\mathrm{V}}\right)=(2100 \mathrm{psi})(1.0)(0.8)(1.0)(1.0)=1680 \mathrm{psi} \\
& >641.300 \mathrm{psi} \therefore \mathrm{OK} \\
& \text { Bending stress ratio }=\mathrm{f}_{\mathrm{b}} / \mathrm{F}_{\mathrm{b}}=641.300 / 1680=0.3817 \\
& \text { Combined Stresses: }
\end{aligned}
$$

The bending moment is about the strong axis of the cross section, and the amplification for $\mathrm{P}-\Delta$ is measured by the column slenderness ratio about the x axis.
$\left(1_{e} / d\right)_{\text {bending moment }}=\left(1_{e} / d\right)_{x}=14.6263$
$\mathrm{F}_{\mathrm{cEx}}=\left[0.822 \mathrm{E}^{\prime}{ }_{\text {min }}\right] /\left[\left(1_{\mathrm{e}} / \mathrm{d}\right)_{\mathrm{x}}\right]^{2}=[(0.822)(816,340 \mathrm{psi})] /\left[(14.6263)^{2}\right]=3136.723 \mathrm{psi}$
*Here, $\left(l_{\mathrm{e}} / \mathrm{d}\right)$ is based on the axis about which the bending moment occurs.
Amplification factor $=1 /\left[1-\left(\mathrm{f}_{\mathrm{c}} / \mathrm{F}_{\mathrm{cEx}}\right)\right]=1 /[1-(697.318 / 3136.723)]=$

$$
=1.2859
$$

$\left(\mathrm{f}_{\mathrm{c}} / \mathrm{F}_{\mathrm{c}}\right)^{2}+\left\{1 /\left[1-\left(\mathrm{f}_{\mathrm{c}} / \mathrm{F}_{\mathrm{cEx}}\right)\right]\right\}\left(\mathrm{f}_{\mathrm{b}} / \mathrm{F}_{\mathrm{b}}\right)=(0.4550)^{2}+(1.2859)(0.3817)=0.6978<1.0 \therefore \mathbf{O K}$

CONTROLS OVER "D + S"

Check Shear:
$\mathrm{f}_{\mathrm{v}}=1.5(\mathrm{~V} / \mathrm{A})=(1.5)\left[(2,598 \mathrm{lb}) /\left(83.53 \mathrm{in}^{2}\right)=46.654 \mathrm{psi}\right.$
$\mathrm{F}_{\mathrm{v}}=300 \mathrm{psi}$
$\mathrm{F}_{\mathrm{v}}=\mathrm{F}_{\mathrm{v}}\left(\mathrm{C}_{\mathrm{D}}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)=(300 \mathrm{psi})(1.0)(0.875)(1.0)=262.5 \mathrm{psi}>46.654 \mathrm{psi} \therefore$ OK

USE 6 3/4" x 12 3/8"

LOAD COMBINATION: D

Try 6 3/4" $\times 12$ 3/8"
$\mathrm{F}_{\mathrm{c}}=2300 \mathrm{psi}$ (Glulam ID \#50, S.P.) (p. 66 NDS Supplement)
$F_{b}=2100$ psi (Glulam ID \#50, S.P.) (p. 66 NDS Supplement)
$\mathrm{A}=83.53 \mathrm{in}^{2}$
$\mathrm{S}=172.3 \mathrm{in}^{3}$
$\mathrm{E}_{\text {min }}=980,000 \mathrm{psi}$

Axial Load: $\mathrm{P}=38.648$ kips (Compression)
Maximum Moment $=5.525 \mathrm{ft}-\mathrm{kips}=66.30$ in-kips
$\mathrm{L}=15^{\prime}-1^{\prime \prime}=15.083333^{\prime}$

Axial Load:
$\mathrm{f}_{\mathrm{c}}=\mathrm{P} / \mathrm{A}=38,648 \mathrm{lb} / 83.53 \mathrm{in}^{2}=462.684 \mathrm{psi}$
$\left(l_{\mathrm{e}} / \mathrm{d}\right)_{\mathrm{x}}=[(15.0833 \prime)(12 \mathrm{in} / \mathrm{ft})] / 12.375^{\prime \prime}=14.6263<50 \therefore$ OK
$\left(l_{e} / d\right)_{y}=0$ because of lateral support provided by roof diaphragm
$\left(l_{\mathrm{e}} / \mathrm{d}\right)_{\max }=\left(l_{\mathrm{e}} / \mathrm{d}\right)_{\mathrm{x}}=14.6263$

The larger slenderness ratio governs the adjust design value. Therefore, the strong axis of the member is critical, and $\left(l_{\mathrm{e}} / \mathrm{d}\right)_{\mathrm{x}}$ is used to determine F ' .
$\mathrm{F}_{\mathrm{c}}=2300 \mathrm{psi}$ (Glulam ID \#50, S.P.) (p. 66 NDS Supplement)
$\mathrm{E}_{\text {min }}=980,000 \mathrm{psi}$
$C_{D}=0.9($ for dead load; load combination $D)$
$C_{M}=0.73$ for F_{c} (p. 64, NDS Supplement)
$C_{M}=0.833$ for E and $E_{\text {min }}$ (p. 64, NDS Supplement)
$C_{M}=0.8$ for $F_{b}(p .64$, NDS Supplement $)$
$\mathrm{C}_{\mathrm{t}}=1.0$
$\mathrm{E}^{\prime}{ }_{\text {min }}=\left(\mathrm{E}_{\text {min }}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)=(980,000)(0.833)(1.0)=816,340 \mathrm{psi}$
$\mathrm{c}=0.9$ (glulam)
$\mathrm{F}_{\mathrm{cE}}=\left[0.822 \mathrm{E}{ }^{\prime}{ }_{\text {min }}\right] /\left[\left(\mathrm{l}_{\mathrm{e}} / \mathrm{d}\right)^{2}\right]=[(0.822)(816,340 \mathrm{psi})] /\left[(14.6263)^{2}\right]=3136.723 \mathrm{psi}$
Here, $l_{\mathrm{e}} / \mathrm{d}$ is based on $\left(\mathrm{l}_{\mathrm{e}} / \mathrm{d}\right)_{\text {max }}$.
$\mathrm{F}_{\mathrm{c}}{ }^{*}=\mathrm{F}_{\mathrm{c}}\left(\mathrm{C}_{\mathrm{D}}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)=(2300 \mathrm{psi})(0.9)(0.73)(1.0)=1511.1 \mathrm{psi}$
$\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}=3136.723 / 1511.1=2.0758$
$\left[1+\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}\right] /(2 \mathrm{c})=[1+2.0758] /[(2)(0.9)]=1.7088$
$\mathrm{C}_{\mathrm{P}}=\left\{\left[1+\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}\right] /(2 \mathrm{c})\right\}-\sqrt{ }\left\{\left[\left(1+\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}\right) /(2 \mathrm{c})\right]^{2}-\left[\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}\right] / \mathrm{c}\right\}$
$=\{1.7088\}-\sqrt{ }\left\{[1.7088]^{2}-[2.0758 / 0.9]\right\}$
$=1.7088-0.7832$
$=0.9255$
$\mathrm{F}^{\prime}{ }_{\mathrm{c}}=\mathrm{F}_{\mathrm{c}}{ }^{*}\left(\mathrm{C}_{\mathrm{P}}\right)=(1511.1 \mathrm{psi})(0.9255)=1398.581 \mathrm{psi}>462.684 \mathrm{psi} \therefore \mathrm{OK}$
Axial stress ratio $=f_{c} / F{ }_{c}=462.684 / 1398.5805=0.3308$

Net Section Check:

Assume connections will be made with (2) rows of $3 / 4$ " diameter bolts.
Assume the hole diameter is $1 / 16$ " larger than the bolt (for stress calculations only).

$$
\begin{gathered}
\mathrm{A}_{\mathrm{n}}=\left(6.75^{\prime \prime}\right)\left[12.375^{\prime \prime}-(2)\left(0.8125^{\prime \prime}\right)\right]=72.5625 \mathrm{in}^{2} \\
\quad\left(3 / 4 "+1 / 16^{\prime \prime}=0.8125^{\prime \prime}\right) \\
\mathrm{f}_{\mathrm{c}}=\mathrm{P} / \mathrm{A}_{\mathrm{n}}=38,648 \mathrm{lb} / 72.5625 \mathrm{in}^{2}=532.617 \mathrm{psi}
\end{gathered}
$$

At braced location there is no reduction for stability.

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{c}}^{\prime}=\mathrm{F}_{\mathrm{c}}{ }^{*}=\mathrm{F}_{\mathrm{c}}\left(\mathrm{C}_{\mathrm{D}}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)=(2300 \mathrm{psi})(0.9)(0.73)(1.0)=1511.1 \mathrm{psi} \\
& 1511.1 \mathrm{psi}>532.617 \mathrm{psi} \therefore \mathrm{OK}
\end{aligned}
$$

Bending:

Bending is about the strong axis of the cross section. The adjusted bending design value for a glulam is governed by the smaller of two criteria: volume effect or lateral stability. In this case,
the beam has full lateral support. Therefore, 1_{u} and R_{B} are zero and the lateral stability factor is $\mathrm{C}_{\mathrm{L}}=1.0$.
$\mathrm{M}=66.30$ in-kips $=66,300 \mathrm{in}-\mathrm{lb}$
$S=172.3 \mathrm{in}^{3}$
$\mathrm{f}_{\mathrm{b}}=\mathrm{M} / \mathrm{S}=66,300 \mathrm{in}-\mathrm{lb} / 172.3 \mathrm{in}^{3}=384.794 \mathrm{psi}$
$\mathrm{F}_{\mathrm{b}}=\mathrm{F}_{\mathrm{b}}\left(\mathrm{C}_{\mathrm{D}}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)\left(\mathrm{C}_{\mathrm{L}}\right)$ or
$\mathrm{F}^{\prime}{ }_{\mathrm{b}}=\mathrm{F}_{\mathrm{b}}\left(\mathrm{C}_{\mathrm{D}}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)\left(\mathrm{C}_{\mathrm{V}}\right)$

For Southern Pine glulam:

$$
\begin{gathered}
\mathrm{C}_{\mathrm{V}}=(21 \text { '/L })^{1 / 20}\left(12^{\prime \prime} / \mathrm{d}\right)^{1 / 20}(5.125 " / \mathrm{b})^{1 / 20} \leq 1.0 \\
\mathrm{C}_{\mathrm{V}}=\left(21 \prime / 15.0833^{\prime}\right)^{1 / 20}\left(12^{\prime \prime} / 12.375^{\prime \prime}\right)^{1 / 20}\left(5.125 " / 6.75^{\prime \prime}\right)^{1 / 20} \leq 1.0 \\
\mathrm{C}_{\mathrm{V}}=1.0012 \leq 1.0 \\
\therefore \mathrm{C}_{\mathrm{V}}=1.0 \\
\mathrm{~F}_{\mathrm{b}}=\mathrm{F}_{\mathrm{b}}\left(\mathrm{C}_{\mathrm{D}}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)\left(\mathrm{C}_{\mathrm{L}} \text { or } \mathrm{C}_{\mathrm{V}}\right)=(2100 \mathrm{psi})(0.9)(0.8)(1.0)(1.0)=1512 \mathrm{psi}
\end{gathered}
$$

$$
>384.794 \mathrm{psi} \therefore \mathrm{OK}
$$

Bending stress ratio $=\mathrm{f}_{\mathrm{b}} / \mathrm{F}^{\prime}{ }_{\mathrm{b}}=384.794 / 1512=0.2545$

Combined Stresses:

The bending moment is about the strong axis of the cross section, and the amplification for $\mathrm{P}-\Delta$ is measured by the column slenderness ratio about the x axis.
$\left(l_{\mathrm{e}} / \mathrm{d}\right)_{\text {bending moment }}=\left(l_{\mathrm{e}} / \mathrm{d}\right)_{\mathrm{x}}=14.6263$
$\mathrm{F}_{\mathrm{cEx}}=\left[0.822 \mathrm{E}^{\prime}{ }_{\text {min }}\right] /\left[\left(\mathrm{l}_{\mathrm{e}} / \mathrm{d}\right)_{\mathrm{x}}\right]^{2}=[(0.822)(816,340 \mathrm{psi})] /\left[(14.6263)^{2}\right]=3136.723 \mathrm{psi}$
*Here, $\left(l_{\mathrm{e}} / \mathrm{d}\right)$ is based on the axis about which the bending moment occurs.

Amplification factor $=1 /\left[1-\left(\mathrm{f}_{\mathrm{c}} / \mathrm{F}_{\mathrm{cEx}}\right)\right]=1 /[1-(462.684 / 3136.723)]=1.1730$
$\left(\mathrm{f}_{\mathrm{c}} / \mathrm{F}^{\prime}{ }_{\mathrm{c}}\right)^{2}+\left\{1 /\left[1-\left(\mathrm{f}_{\mathrm{c}} / \mathrm{F}_{\mathrm{cEx}}\right)\right]\right\}\left(\mathrm{f}_{\mathrm{b}} / \mathrm{F}^{\prime}{ }_{\mathrm{b}}\right)=(0.3308)^{2}+(1.1730)(0.2545)=0.4080<1.0 \therefore$ OK
Check Shear:
$\mathrm{f}_{\mathrm{v}}=1.5(\mathrm{~V} / \mathrm{A})=(1.5)\left[(1,559 \mathrm{lb}) /\left(83.53 \mathrm{in}^{2}\right)=27.996 \mathrm{psi}\right.$
$\mathrm{F}_{\mathrm{v}}=300 \mathrm{psi}$
$\mathrm{F}^{\prime}{ }_{\mathrm{v}}=\mathrm{F}_{\mathrm{v}}\left(\mathrm{C}_{\mathrm{D}}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)=(300 \mathrm{psi})(0.9)(0.875)(1.0)=236.25 \mathrm{psi}>27.996 \mathrm{psi} \therefore \mathrm{OK}$

DOES NOT CONTROL

*Make Members 20, 21, 22, and 23 the same size cross section as Member 19 so that the entire top chord of the truss is the same size cross-section (the member size used for Member 19 will work for Members 20, 21, 22, and 23 since Members 20, 21, 22, and 23 are shorter in length and are required to carry less axial load than Member 19)

FINAL MEMBER SIZE = $63 / 4 " \times 12$ 3/8" Southern Pine Glulam I.D. \#50

Bottom Chord: Combined Tension and Bending Forces (Members 3 and 4 are worst case)

LOAD COMBINATION: $D+S$

Axial Load: $\mathrm{P}=53.974$ kips (Tension)
Moment $=1.656 \mathrm{ft}-\mathrm{kips}=19.872$ in-kips $=19,872 \mathrm{in}-\mathrm{lb}($ due to Dead Load $)$
Try d=6 $3 / 4 "=6.75^{\prime \prime}$ (same width as top chord members)

Axial Tension:
$\mathrm{F}_{\mathrm{t}}=1550$ psi (Glulam ID \#50, S.P.) (p. 66 NDS Supplement)
$C_{D}=1.15$ (for snow load; load combination $D+S$)
$C_{M}=0.8$ for $F_{t}(p .64$, NDS Supplement $)$
$\mathrm{C}_{\mathrm{t}}=1.0$
$\mathrm{F}_{\mathrm{t}}{ }^{\prime}=\mathrm{F}_{\mathrm{t}}\left(\mathrm{C}_{\mathrm{D}}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)=(1550 \mathrm{psi})(1.15)(0.8)(1.0)=1426 \mathrm{psi}$
$P=\left(F^{\prime} t\right)(A)$
Req'd $\mathrm{A}_{\mathrm{n}}=\mathrm{P} / \mathrm{F}^{\prime}{ }_{\mathrm{t}}=53,974 \mathrm{lb} / 1426 \mathrm{psi}=37.850 \mathrm{in}^{2}$
Assume (2) rows of $3 / 4$ " diameter bolts.
Req'd $\mathrm{A}_{\mathrm{g}}=\mathrm{A}_{\mathrm{n}}+\mathrm{A}_{\mathrm{h}}=37.850 \mathrm{in}^{2}+\left(6.75^{\prime}\right)\left[(2)\left(3 / 4 "+1 / 16^{\prime \prime}\right)\right]=48.819 \mathrm{in}^{2}$
Try $63 / 4 " \times 81 / 4 "\left(\mathrm{~A}=55.69 \mathrm{in}^{2}>48.819 \mathrm{in}^{2} \therefore \mathrm{OK}\right)$
$\mathrm{A}_{\mathrm{n}}=55.69 \mathrm{in}^{2}-\left(6.75^{\prime \prime}\right)\left[(2)\left(3 / 4 \prime+1 / 16^{\prime \prime}\right)\right]=44.721 \mathrm{in}^{2}$
$\mathrm{f}_{\mathrm{t}}=\mathrm{T} / \mathrm{A}_{\mathrm{n}}=(53,974 \mathrm{lb}) /\left(44.721 \mathrm{in}^{2}\right)=1206.898 \mathrm{psi}<1426 \mathrm{psi} \therefore \mathrm{OK}$

Determine tension stress at the point of maximum bending stress (midspan) for use in the interaction formula.

$$
\mathrm{f}_{\mathrm{t}}=\mathrm{T} / \mathrm{A}_{\mathrm{g}}=53,974 \mathrm{lb} / 55.69 \mathrm{in}^{2}=969.187 \mathrm{psi}<1426 \mathrm{psi} \therefore \mathrm{OK}
$$

Bending:

$\mathrm{S}_{\mathrm{x}}=76.57 \mathrm{in}^{3}$
$\mathrm{f}_{\mathrm{b}}=\mathrm{M} / \mathrm{S}=(19,872 \mathrm{in}-\mathrm{lb}) /\left(76.57 \mathrm{in}^{3}\right)=259.527 \mathrm{psi}$
$\mathrm{F}^{\prime}{ }_{\mathrm{b}}=\mathrm{F}_{\mathrm{b}}\left(\mathrm{C}_{\mathrm{D}}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)\left(\mathrm{C}_{\mathrm{L}}\right)$ or
$\mathrm{F}^{\prime}{ }_{\mathrm{b}}=\mathrm{F}_{\mathrm{b}}\left(\mathrm{C}_{\mathrm{D}}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)\left(\mathrm{C}_{\mathrm{V}}\right)$
For $C_{L}: l_{\mathrm{u}} / \mathrm{d}=\left[\left(13.0^{\prime}\right)(12 \mathrm{in} / \mathrm{ft})\right] / 8.25^{\prime \prime}=18.909>7$

$$
\begin{aligned}
& \therefore 1_{\mathrm{e}}=1.631_{\mathrm{u}}+3 \mathrm{~d}=(1.63)\left[\left(13.0^{\prime}\right)(12 \mathrm{in} / \mathrm{ft})\right]+(3)\left(8.25^{\prime \prime}\right)=279.03^{\prime \prime} \\
& \mathrm{R}_{\mathrm{B}}=\sqrt{ } 1_{\mathrm{e}} \mathrm{~d} / \mathrm{b}^{2}=\sqrt{ }\left[\left(279.03^{\prime \prime}\right)\left(8.25^{\prime \prime}\right) /\left(6.75^{\prime \prime}\right)^{2}\right]=7.1080 \\
& \mathrm{~F}_{\mathrm{bE}}=1.20 \mathrm{E}^{\prime}{ }_{\min } / \mathrm{R}_{\mathrm{B}}^{2}=[(1.20)(816,340 \mathrm{psi})] /(7.1080)^{2}=19,388.98 \mathrm{psi} \\
& \mathrm{~F}_{\mathrm{b}}=\mathrm{F}_{\mathrm{b}}\left(\mathrm{C}_{\mathrm{D}}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)=(2100 \mathrm{psi})(1.15)(0.8)(1.0)=1932 \mathrm{psi} \\
& \mathrm{~F}_{\mathrm{bE}} / \mathrm{F}_{\mathrm{b}}=(19,388.98) /(1932)=10.0357 \\
& \left(1+\mathrm{F}_{\mathrm{bE}} / \mathrm{F}_{\mathrm{b}}\right) / 1.9=(1+10.0357) / 1.9=5.8083 \\
& \mathrm{C}_{\mathrm{L}}=\left[\left(1+\mathrm{F}_{\mathrm{bE}} / \mathrm{F}_{\mathrm{b}}\right) / 1.9\right]-\sqrt{ }\left\{\left[\left(1+\mathrm{F}_{\mathrm{bE}} / \mathrm{F}_{\mathrm{b}}\right) / 1.9\right]^{2}-\left[\mathrm{F}_{\mathrm{bE}} / \mathrm{F}^{*} / 0.95\right]\right\} \\
& \left.\quad=5.8083-\sqrt{ }(5.8083)^{2}-(10.0357 / 0.95)\right]=0.9946
\end{aligned}
$$

For Southern Pine glulam:

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{V}}=\left(21^{\prime} / \mathrm{L}\right)^{1 / 20}\left(12^{\prime} / \mathrm{d}\right)^{1 / 20}\left(5.125^{\prime} / \mathrm{b}\right)^{1 / 20} \leq 1.0 \\
& \mathrm{C}_{\mathrm{V}}=\left(21^{\prime} / 13.00^{\prime}\right)^{1 / 20}\left(12^{\prime /} / 8.25^{\prime}\right)^{1 / 20}\left(5.125^{\prime} / 6.75^{\prime}\right)^{1 / 20} \leq 1.0 \\
& \mathrm{C}_{\mathrm{V}}=1.0294 \leq 1.0 \therefore \mathrm{C}_{\mathrm{V}}=1.0
\end{aligned}
$$

C_{L} controls over C_{V}

$$
\begin{aligned}
\mathrm{F}_{\mathrm{b}}^{*}=\mathrm{F}_{\mathrm{b}}^{\prime} & =\mathrm{F}_{\mathrm{b}}\left(\mathrm{C}_{\mathrm{D}}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)\left(\mathrm{C}_{\mathrm{L}}\right)=(2100 \mathrm{psi})(1.15)(0.8)(1.0)(0.9946)=1921.567 \mathrm{psi} \\
> & 259.527 \mathrm{psi} \therefore \text { OK }
\end{aligned}
$$

Bending stress ratio $=\mathrm{f}_{\mathrm{b}} / \mathrm{F}^{\prime}{ }_{\mathrm{b}}=(259.527 \mathrm{psi}) /(1921.567 \mathrm{psi})=0.1351$

Combined Stresses:
$\left(\mathrm{f}_{\mathrm{t}} / \mathrm{F}^{\prime}{ }_{\mathrm{t}}\right)+\left(\mathrm{f}_{\mathrm{bx}} / \mathrm{F}^{*}{ }_{\mathrm{bx}}\right)=(969.187 / 1426 \mathrm{psi})+(259.527 / 1921.567)=0.8147<1.0 \therefore$ OK

Check Shear:
$\mathrm{f}_{\mathrm{v}}=1.5(\mathrm{~V} / \mathrm{A})=(1.5)\left[(520 \mathrm{lb}) /\left(55.69 \mathrm{in}^{2}\right)=14.006 \mathrm{psi}\right.$
$\mathrm{F}_{\mathrm{v}}=300 \mathrm{psi}$
$\mathrm{F}^{\prime}{ }_{\mathrm{v}}=\mathrm{F}_{\mathrm{v}}\left(\mathrm{C}_{\mathrm{D}}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)=(300 \mathrm{psi})(1.15)(0.875)(1.0)=301.875 \mathrm{psi}>14.006 \mathrm{psi} \therefore$ OK
LOAD COMBINATION: $D+L_{r}$
Try $63 / 4 \times 81 / 4 "$
Axial Load: $\mathrm{P}=51.315$ kips (Tension)
Moment $=1.656 \mathrm{ft}-\mathrm{kips}=19.872$ in-kips $=19,872$ in-lb $($ due to Dead Load $)$
$\mathrm{A}=55.69 \mathrm{in}^{2}$
$S_{x}=76.57 \mathrm{in}^{3}$

Axial Tension:

Assume (2) rows of $3 / 4$ " diameter bolts.

$$
\begin{aligned}
& A_{n}=55.69 \mathrm{in}^{2}-\left(6.75^{\prime \prime}\right)\left[(2)\left(3 / 4 \prime+1 / 16^{\prime \prime}\right)\right]=44.721 \mathrm{in}^{2} \\
& \mathrm{f}_{\mathrm{t}}=\mathrm{T} / \mathrm{A}_{\mathrm{n}}=(51,315 \mathrm{lb}) /\left(44.721 \mathrm{in}^{2}\right)=1147.448 \mathrm{psi} \\
& \left.\mathrm{~F}_{\mathrm{t}}=1550 \text { psi (Glulam ID \#50, S.P.) (p. } 66 \text { NDS Supplement }\right) \\
& \left.\mathrm{C}_{\mathrm{D}}=1.0 \text { (for live load; load combination } \mathrm{D}+\mathrm{L}_{\mathrm{r}}\right) \\
& \mathrm{C}_{\mathrm{M}}=0.8 \text { for } \mathrm{F}_{\mathrm{t}}(\text { p. } 64 \text {, NDS Supplement }) \\
& \mathrm{C}_{t}=1.0 \\
& \mathrm{~F}_{\mathrm{t}}^{\prime}=\mathrm{F}_{\mathrm{t}}\left(\mathrm{C}_{\mathrm{D}}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)=(1550 \mathrm{psi})(1.0)(0.8)(1.0)=1240 \mathrm{psi}>1147.448 \mathrm{psi} \therefore \text { OK }
\end{aligned}
$$

Determine tension stress at the point of maximum bending stress (midspan) for use in the interaction formula.

$$
\mathrm{f}_{\mathrm{t}}=\mathrm{T} / \mathrm{A}_{\mathrm{g}}=51,315 \mathrm{lb} / 55.69 \mathrm{in}^{2}=921.440 \mathrm{psi}<1240 \mathrm{psi} \therefore \mathrm{OK}
$$

Bending:

$\mathrm{f}_{\mathrm{b}}=\mathrm{M} / \mathrm{S}=(19,872 \mathrm{in}-\mathrm{lb}) /\left(76.57 \mathrm{in}^{3}\right)=259.527 \mathrm{psi}$
$\mathrm{F}_{\mathrm{b}}=\mathrm{F}_{\mathrm{b}}\left(\mathrm{C}_{\mathrm{D}}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)\left(\mathrm{C}_{\mathrm{L}}\right)$ or
$\mathrm{F}_{\mathrm{b}}{ }^{\prime}=\mathrm{F}_{\mathrm{b}}\left(\mathrm{C}_{\mathrm{D}}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)\left(\mathrm{C}_{\mathrm{V}}\right)$
For $\mathrm{C}_{\mathrm{L}}: 1_{\mathrm{u}} / \mathrm{d}=\left[\left(13.0^{\prime}\right)(12 \mathrm{in} / \mathrm{ft})\right] / 8.25^{\prime \prime}=18.909>7$

$$
\begin{aligned}
& \therefore \mathrm{l}_{\mathrm{e}}=1.631_{\mathrm{u}}+3 \mathrm{~d}=(1.63)\left[\left(13.0^{\prime}\right)(12 \mathrm{in} / \mathrm{ft})\right]+(3)\left(8.25^{\prime \prime}\right)=279.03^{\prime \prime} \\
& \mathrm{R}_{\mathrm{B}}=\sqrt{ } \mathrm{l}_{\mathrm{e}} \mathrm{~d} / \mathrm{b}^{2}=\sqrt{ }\left[(279.03 ")(8.25 ") /\left(6.75^{\prime \prime}\right)^{2}\right]=7.1080 \\
& \mathrm{~F}_{\mathrm{bE}}=1.20 \mathrm{E}_{\min }^{\prime} / \mathrm{R}_{\mathrm{B}}{ }^{2}=[(1.20)(816,340 \mathrm{psi})] /(7.1080)^{2}=19,388.98 \mathrm{psi} \\
& \mathrm{~F}_{\mathrm{b}}=\mathrm{F}_{\mathrm{b}}\left(\mathrm{C}_{\mathrm{D}}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)=(2100 \mathrm{psi})(1.15)(0.8)(1.0)=1932 \mathrm{psi} \\
& \mathrm{~F}_{\mathrm{bE}} / \mathrm{F}_{\mathrm{b}}^{*}=(19,388.98) /(1932)=10.0357 \\
& \left(1+\mathrm{F}_{\mathrm{bE}} / \mathrm{F}_{\mathrm{b}}{ }^{\prime}\right) / 1.9=(1+10.0357) / 1.9=5.8083 \\
& \mathrm{C}_{\mathrm{L}}=\left[\left(1+\mathrm{F}_{\mathrm{bE}} / \mathrm{F}_{\mathrm{b}}\right) / 1.9\right]-\sqrt{ }\left\{\left[\left(1+\mathrm{F}_{\mathrm{bE}} / \mathrm{F}_{\mathrm{b}}{ }^{*}\right) / 1.9\right]^{2}-\left[\mathrm{F}_{\mathrm{bE}} / \mathrm{F}_{\mathrm{b}} / 0.95\right]\right\} \\
& \left.\quad=5.8083-\sqrt{ }(5.8083)^{2}-(10.0357 / 0.95)\right]=0.9946
\end{aligned}
$$

For Southern Pine glulam:

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{V}}=\left(21^{\prime} / \mathrm{L}\right)^{1 / 20}\left(12^{\prime \prime} / \mathrm{d}\right)^{1 / 20}\left(5.125^{\prime \prime} / \mathrm{b}\right)^{1 / 20} \leq 1.0 \\
& \mathrm{C}_{\mathrm{V}}=\left(21^{\prime} / 13.0^{\prime}\right)^{1 / 20}\left(12^{\prime \prime} / 8.25^{\prime \prime}\right)^{1 / 20}\left(5.125^{\prime \prime} / 6.75^{\prime \prime}\right)^{1 / 20} \leq 1.0 \\
& \mathrm{C}_{\mathrm{V}}=1.0294 \leq 1.0 \therefore \mathrm{C}_{\mathrm{V}}=1.0
\end{aligned}
$$

C_{L} controls over C_{V}

$$
\begin{aligned}
\mathrm{F}_{\mathrm{b}}{ }^{\prime}= & \mathrm{F}_{\mathrm{b}} \\
= & \mathrm{F}_{\mathrm{b}}\left(\mathrm{C}_{\mathrm{D}}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)\left(\mathrm{C}_{\mathrm{L}}\right)=(2100 \mathrm{psi})(1.0)(0.8)(1.0)(0.9946)=1670.928 \mathrm{psi} \\
& >259.527 \mathrm{psi} \therefore \mathrm{OK}
\end{aligned}
$$

Bending stress ratio $=\mathrm{f}_{\mathrm{bx}} / \mathrm{F}^{*}{ }_{\mathrm{bx}}=(259.527 \mathrm{psi}) /(1670.928 \mathrm{psi})=0.1553$
Combined Stresses:
$\left(\mathrm{f}_{\mathrm{t}} / \mathrm{F}_{\mathrm{t}}{ }_{\mathrm{t}}\right)+\left(\mathrm{f}_{\mathrm{bx}} / \mathrm{F}^{*}{ }_{\mathrm{bx}}\right)=(921.440 / 1240)+(259.527 / 1670.928)=0.8984<1.0 \therefore \mathrm{OK}$

CONTROLS OVER LOAD COMBINATION "D + S"

Check Shear:
$\mathrm{f}_{\mathrm{v}}=1.5(\mathrm{~V} / \mathrm{A})=(1.5)\left[(520 \mathrm{lb}) /\left(55.69 \mathrm{in}^{2}\right)=14.006 \mathrm{psi}\right.$
$\mathrm{F}_{\mathrm{v}}=300 \mathrm{psi}$
$\mathrm{F}^{\prime}{ }_{\mathrm{v}}=\mathrm{F}_{\mathrm{v}}\left(\mathrm{C}_{\mathrm{D}}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)=(300 \mathrm{psi})(1.0)(0.875)(1.0)=262.5 \mathrm{psi}>14.006 \mathrm{psi} \therefore \mathbf{O K}$

LOAD COMBINATION: D

Try $63 / 4 " \times 81 / 4 "$

Axial Load: $\mathrm{P}=34.160$ kips (Tension)

Moment $=1.656 \mathrm{ft}-\mathrm{kips}=19.872$ in-kips $=19,872$ in-lb $($ due to Dead Load $)$
$\mathrm{A}=55.69 \mathrm{in}^{2}$
$\mathrm{S}_{\mathrm{x}}=76.57 \mathrm{in}^{3}$
Axial Tension:
Assume (2) rows of $3 / 4$ " diameter bolts.
$\mathrm{A}_{\mathrm{n}}=55.69 \mathrm{in}^{2}-\left(6.75^{\prime \prime}\right)\left[(2)\left(3 / 4 \prime+1 / 16^{\prime \prime}\right)\right]=44.721 \mathrm{in}^{2}$
$\mathrm{f}_{\mathrm{t}}=\mathrm{T} / \mathrm{A}_{\mathrm{n}}=(34,160 \mathrm{lb}) /\left(44.721 \mathrm{in}^{2}\right)=763.847 \mathrm{psi}$
$\mathrm{F}_{\mathrm{t}}=1550 \mathrm{psi}$ (Glulam ID \#50, S.P.) (p. 66 NDS Supplement)
$C_{D}=0.9($ for dead load; load combination $D)$
$C_{M}=0.8$ for $F_{t}(p .64$, NDS Supplement $)$
$\mathrm{C}_{\mathrm{t}}=1.0$
$\mathrm{F}_{\mathrm{t}}{ }^{\prime}=\mathrm{F}_{\mathrm{t}}\left(\mathrm{C}_{\mathrm{D}}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)=(1550 \mathrm{psi})(0.9)(0.8)(1.0)=1116 \mathrm{psi}>763.847 \mathrm{psi} \therefore$ OK
Determine tension stress at the point of maximum bending stress (midspan) for use in the interaction formula.

$$
\mathrm{f}_{\mathrm{t}}=\mathrm{T} / \mathrm{A}_{\mathrm{g}}=34,160 \mathrm{lb} / 55.69 \mathrm{in}^{2}=613.396 \mathrm{psi}<1116 \mathrm{psi} \therefore \mathrm{OK}
$$

Bending:

$\mathrm{f}_{\mathrm{b}}=\mathrm{M} / \mathrm{S}=(19,872 \mathrm{in}-\mathrm{lb}) /\left(76.57 \mathrm{in}^{3}\right)=259.527 \mathrm{psi}$
$\mathrm{F}^{\prime}{ }_{\mathrm{b}}=\mathrm{F}_{\mathrm{b}}\left(\mathrm{C}_{\mathrm{D}}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)\left(\mathrm{C}_{\mathrm{L}}\right)$ or
$\mathrm{F}^{\prime}{ }_{\mathrm{b}}=\mathrm{F}_{\mathrm{b}}\left(\mathrm{C}_{\mathrm{D}}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)\left(\mathrm{C}_{\mathrm{V}}\right)$
$\mathrm{C}_{\mathrm{L}}=0.9946$

For Southern Pine glulam: $\mathrm{C}_{\mathrm{V}}=1.0294 \leq 1.0 \therefore \mathrm{C}_{\mathrm{V}}=1.0$
C_{L} controls over C_{V}

$$
\begin{aligned}
\mathrm{F}_{\mathrm{b}}= & \mathrm{F}_{\mathrm{b}} \\
& =\mathrm{F}_{\mathrm{b}}\left(\mathrm{C}_{\mathrm{D}}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)\left(\mathrm{C}_{\mathrm{L}}\right)=(2100 \mathrm{psi})(0.9)(0.8)(1.0)(0.9946)=1503.835 \mathrm{psi} \\
& >259.527 \mathrm{psi} \therefore \text { OK }
\end{aligned}
$$

Bending stress ratio $=\mathrm{f}_{\mathrm{bx}} / \mathrm{F}^{*}{ }_{\mathrm{bx}}=(259.527 \mathrm{psi}) /(1503.835 \mathrm{psi})=0.1726$

Combined Stresses:
$\left(\mathrm{f}_{\mathrm{t}} / \mathrm{F}^{\prime}{ }_{\mathrm{t}}\right)+\left(\mathrm{f}_{\mathrm{bx}} / \mathrm{F}^{*}{ }_{\mathrm{bx}}\right)=(763.847 / 1116)+(259.527 / 1503.835)=0.8570<1.0 \therefore$ OK
Check Shear:
$\mathrm{f}_{\mathrm{v}}=1.5(\mathrm{~V} / \mathrm{A})=(1.5)\left[(520 \mathrm{lb}) /\left(55.69 \mathrm{in}^{2}\right)=14.006 \mathrm{psi}\right.$
$\mathrm{F}_{\mathrm{v}}=300 \mathrm{psi}$
$\mathrm{F}^{\prime}{ }_{\mathrm{v}}=\mathrm{F}_{\mathrm{v}}\left(\mathrm{C}_{\mathrm{D}}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)=(300 \mathrm{psi})(0.9)(0.875)(1.0)=236.25 \mathrm{psi}>14.006 \mathrm{psi} \therefore$ OK

DOES NOT CONTROL

*Use same member size for all bottom chord members (for consistency); the member size used for Member 6 will work for the rest of the bottom chord members since the axial (tensile) force in each of these other bottom chord members is less than the axial tensile force in Member 6.

FINAL MEMBER SIZE = 6 3/4" x $81 / 4$ " Southern Pine Glulam ID \#50

Member 24 in SAP2000:

Load Combination: $D+S$

Axial Load: $\mathrm{P}=0.262$ kips (Compression)
$\mathrm{L}=20^{\prime}-0^{\prime \prime}=20.0^{\prime}$
$\left(l_{\mathrm{e}} / \mathrm{d}\right)_{\text {max }}=50$
$\mathrm{d} \geq 1_{\mathrm{e}} / 50=\left[\left(20^{\prime}\right)(12 \mathrm{in} / \mathrm{ft})\right] / 50=4.8^{\prime \prime}$
Try d $=63 / 4^{\prime \prime}=6.75^{\prime \prime}$
$\left(1_{\mathrm{e}} / \mathrm{d}\right)=\left[\left(20.0^{\prime}\right)(12 \mathrm{in} / \mathrm{ft})\right] / 6.75^{\prime \prime}=35.556<50 \therefore \mathrm{OK}$
$F_{c}=2300$ psi (Glulam ID \#50, S.P.) (p. 66, NDS Supplement)
$\mathrm{E}_{\text {min }}=980,000 \mathrm{psi}$
$\mathrm{C}_{\mathrm{D}}=1.15$ (for snow load; load combination $\mathrm{D}+\mathrm{S}$)
$C_{M}=0.73$ for F_{c} (p. 64, NDS Supplement)
$C_{M}=0.833$ for E and $E_{\text {min }}$ (p. 64, NDS Supplement)
$\mathrm{C}_{\mathrm{t}}=1.0$
$\mathrm{E}^{\prime}{ }_{\text {min }}=\left(\mathrm{E}_{\text {min }}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)=(980,000)(0.833)(1.0)=816,340 \mathrm{psi}$
$\mathrm{c}=0.9$ (glulam)
$\mathrm{F}_{\mathrm{cE}}=\left[0.822 \mathrm{E}^{\prime}{ }_{\text {min }}\right] /\left[\left(\mathrm{l}_{\mathrm{e}} / \mathrm{d}\right)^{2}\right]=[(0.822)(816,340 \mathrm{psi})] /\left[(35.5556)^{2}\right]=530.7963854 \mathrm{psi}$
$\mathrm{F}_{\mathrm{c}}{ }^{*}=\mathrm{F}_{\mathrm{c}}\left(\mathrm{C}_{\mathrm{D}}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)=(2300 \mathrm{psi})(1.15)(0.73)(1.0)=1930.85 \mathrm{psi}$
$\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}=530.7964 / 1930.85=0.2749029626$
$\left[1+\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}\right] /(2 \mathrm{c})=[1+0.2749] /[(2)(0.9)]=0.7082794237$
$\mathrm{C}_{\mathrm{P}}=\left\{\left[1+\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}\right] /(2 \mathrm{c})\right\}-\sqrt{ }\left\{\left[\left(1+\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}\right) /(2 \mathrm{c})\right]^{2}-\left[\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}\right] / \mathrm{c}\right\}$
$=\{0.7082794237\}-\sqrt{ }\left\{[0.7082794237]^{2}-[0.2749 / 0.9]\right\}$
$=0.7082794237-0.4429582438$
$=0.2653211799$
$\mathrm{F}^{\prime}{ }_{\mathrm{c}}=\mathrm{F}_{\mathrm{c}}{ }^{*}\left(\mathrm{C}_{\mathrm{P}}\right)=(1930.85 \mathrm{psi})(0.2653)=512.2954001 \mathrm{psi}$
$\mathrm{P}=\left(\mathrm{F}^{\prime}{ }_{\mathrm{c}}\right)(\mathrm{A})$
$\mathrm{A}_{\mathrm{req}{ }^{\prime} \mathrm{d}}=\mathrm{P} / \mathrm{F}^{\prime}{ }_{\mathrm{c}}=262 \mathrm{lb} / 512.2954 \mathrm{psi}=0.511424 \mathrm{in}^{2}$
Use 6 3/4" x $67 / 8$ " ($\mathrm{A}=46.41$ in $^{2}>0.51$ in $^{2} \therefore$ OK $)$
*Must use width of $63 / 4$ " to match that of the top and bottom chord members (need to keep consistent width of members for side plates (for connections for truss members))
*Other load combinations of " D " and " $\mathrm{D}+\mathrm{L}_{\mathrm{r}}$ " will not require a larger size member since load is so small; width of member must be ≥ 4.8 " to meet $l_{\mathrm{e}} / \mathrm{d} \leq 50$, which results in a members whose capacity is much greater than the required load it must carry

Member 32 in SAP2000:

Tension member
Very small axial force
Use $63 / 4$ " $\times 67 / 8$ " (minimum size with $d=63 / 4$ ")

All web members forces are considerably small:
\therefore Use $63 / 4$ " $\mathbf{x} 678$ " for all web members (minimum size to maintain same width as top and bottom chord members)

Member 1 (Member 1 in SAP2000 as well): Column

LOAD COMBINATION: D + S

Axial Load: $\mathrm{P}=33.764$ kips (Compression)
Analyze Column Buckling About x Axis:

$$
\begin{aligned}
& \left(1_{\mathrm{e}} / \mathrm{d}\right)_{\max }=50 \\
& \left(1_{\mathrm{e}} / \mathrm{d}\right)_{\mathrm{x}}=\left[(1.0)\left(40.0^{\prime}\right)(12 \mathrm{in} / \mathrm{ft})\right] / \mathrm{d} \leq 50 \\
& \mathrm{~d} \geq 1_{\mathrm{e}} / 50=\left[\left(40.0^{\prime}\right)(12 \mathrm{in} / \mathrm{ft})\right] / 50=9.6^{\prime \prime}
\end{aligned}
$$

Analyze Column Bucking About y Axis:
Braced at the third-points $\left(\mathrm{L}=40.0^{\prime} / 3=13.3333^{\prime}\right)$

$$
\begin{aligned}
& \left(l_{e} / \mathrm{d}\right)_{\max }=50 \\
& \left(1_{e} / \mathrm{d}\right)_{\mathrm{y}}=\left[(1.0)\left(13.333^{\prime}\right)(12 \mathrm{in} / \mathrm{ft})\right] / \mathrm{d} \leq 50 \\
& \mathrm{~d} \geq 1_{\mathrm{e}} / 50=\left[\left(13.3333^{\prime}\right)(12 \mathrm{in} / \mathrm{ft})\right] / 50=3.2^{\prime \prime}
\end{aligned}
$$

Try d=63/4" = 6.75" (to match "d" of truss members)
$\left(1_{\mathrm{e}} / \mathrm{d}\right)_{\mathrm{y}}=\left[\left(13.3333^{\prime}\right)(12 \mathrm{in} / \mathrm{ft})\right] / 6.75^{\prime \prime}=23.7037037$
$\mathrm{F}_{\mathrm{c}}=2300 \mathrm{psi}$ (Glulam ID \#50, S.P.) (p. 66 NDS Supplement)
$\mathrm{E}_{\text {min }}=980,000 \mathrm{psi}$
$\mathrm{C}_{\mathrm{D}}=1.15$ (for snow load; load combination $\mathrm{D}+\mathrm{S}$)
$C_{M}=0.73$ for F_{c} (p. 64, NDS Supplement)
$C_{M}=0.833$ for E and $E_{\text {min }}$ (p. 64, NDS Supplement)
$\mathrm{C}_{\mathrm{t}}=1.0$
$\mathrm{E}^{\prime}{ }_{\text {min }}=\left(\mathrm{E}_{\text {min }}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)=(980,000)(0.833)(1.0)=816,340 \mathrm{psi}$
$\mathrm{c}=0.9$ (glulam)
$\mathrm{F}_{\mathrm{cE}}=\left[0.822 \mathrm{E}^{\prime}{ }_{\text {min }}\right] /\left[\left(\mathrm{l}_{\mathrm{d}} / \mathrm{d}\right)^{2}\right]=[(0.822)(816,340 \mathrm{psi})] /\left[(23.7037037)^{2}\right]=1194.291867 \mathrm{psi}$
$\mathrm{F}_{\mathrm{c}}{ }^{*}=\mathrm{F}_{\mathrm{c}}\left(\mathrm{C}_{\mathrm{D}}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)=(2300 \mathrm{psi})(1.15)(0.73)(1.0)=1930.85 \mathrm{psi}$
$\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}=1194.2919 / 1930.85=0.6185316661$
$\left[1+\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}\right] /(2 \mathrm{c})=[1+0.6185] /[(2)(0.9)]=0.8991942589$
$\mathrm{C}_{\mathrm{P}}=\left\{\left[1+\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}\right] /(2 \mathrm{c})\right\}-\sqrt{ }\left\{\left[\left(1+\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}{ }^{*}\right) /(2 \mathrm{c})\right]^{2}-\left[\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}\right] / \mathrm{c}\right\}$
$=\{0.8991942589\}-\sqrt{ }\left\{[0.8991942589]^{2}-[0.6185 / 0.9]\right\}$
$=0.8991942589-0.3482454949$
$=0.550948764$
$\mathrm{F}^{\prime}{ }_{\mathrm{c}}=\mathrm{F}_{\mathrm{c}}{ }^{*}\left(\mathrm{C}_{\mathrm{P}}\right)=(1930.85 \mathrm{psi})(0.5509)=1063.799421 \mathrm{psi}$
$\mathrm{P}=\left(\mathrm{F}^{\prime}{ }_{\mathrm{c}}\right)(\mathrm{A})$
$\mathrm{A}_{\mathrm{req}{ }^{\prime} \mathrm{d}}=\mathrm{P} / \mathrm{F}^{\prime}{ }_{\mathrm{c}}=33,764 \mathrm{lb} / 1063.7994 \mathrm{psi}=31.739 \mathrm{in}^{2}$
Use $63 / 4 " \times 81 / 4 "\left(\mathrm{~A}=55.69 \mathrm{in}^{2}>31.74 \mathrm{in}^{2} \therefore \mathrm{OK}\right)$
However, $81 / 2 "<9.6$ " (required dimension to prevent buckling about x axis)
Try $63 / 4$ " $\times 95 / 8$ " $\left(A=64.97\right.$ in $^{2}>31.74$ in $^{2} . \therefore$ OK $)$
Check Column Dimensions:

$$
\begin{aligned}
& \left(\mathrm{l}_{\mathrm{e}} / \mathrm{d}\right)_{\mathrm{x}}=\left[(1.0)\left(40.0^{\prime}\right)(12 \mathrm{in} / \mathrm{ft})\right] / 9.625=49.8701 \leq 50 \therefore \text { OK }\left[\text { controls over }\left(\mathrm{l}_{\mathrm{e}} / \mathrm{d}\right)_{\mathrm{y}}\right] \\
& \left(\mathrm{l}_{\mathrm{e}} / \mathrm{d}\right)_{\mathrm{y}}=\left[(1.0)\left(13.3333^{\prime}\right)(12 \mathrm{in} / \mathrm{ft})\right] / 6.75=23.7037 \leq 50 \therefore \text { OK }
\end{aligned}
$$

Analyze Column Buckling About x Axis:
$\left(1_{\mathrm{e}} / \mathrm{d}\right)_{\mathrm{x}}=\left[(1.0)\left(40.0^{\prime}\right)(12 \mathrm{in} / \mathrm{ft})\right] / 9.625=49.8701$
$\mathrm{F}_{\mathrm{c}}=2300 \mathrm{psi}$ (Glulam ID \#50, S.P.) (p. 66 NDS Supplement)

$$
\begin{aligned}
& \mathrm{E}_{\text {min }}=980,000 \mathrm{psi} \\
& \mathrm{C}_{\mathrm{D}}=1.15 \text { (for snow load; load combination } \mathrm{D}+\mathrm{S} \text {) } \\
& C_{M}=0.73 \text { for } F_{c} \text { (p. 64, NDS Supplement) } \\
& C_{M}=0.833 \text { for } E \text { and } E_{\text {min }} \text { (p. 64, NDS Supplement) } \\
& \mathrm{C}_{\mathrm{t}}=1.0 \\
& \mathrm{E}^{\prime}{ }_{\text {min }}=\left(\mathrm{E}_{\text {min }}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)=(980,000)(0.833)(1.0)=816,340 \mathrm{psi} \\
& \mathrm{c}=0.9 \text { (glulam) } \\
& \mathrm{F}_{\mathrm{cE}}=\left[0.822 \mathrm{E}^{\prime}{ }_{\text {min }}\right] /\left[\left(\mathrm{l}_{\mathrm{e}} / \mathrm{d}\right)^{2}\right]=[(0.822)(816,340 \mathrm{psi})] /\left[(49.87012987)^{2}\right]=269.812 \mathrm{psi} \\
& \mathrm{~F}_{\mathrm{c}}{ }^{*}=\mathrm{F}_{\mathrm{c}}\left(\mathrm{C}_{\mathrm{D}}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)=(2300 \mathrm{psi})(1.15)(0.73)(1.0)=1930.85 \mathrm{psi} \\
& \mathrm{~F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}=269.812 / 1930.85=0.1397 \\
& {\left[1+\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}\right] /(2 \mathrm{c})=[1+0.1397] /[(2)(0.9)]=0.6332} \\
& \mathrm{C}_{\mathrm{P}}=\left\{\left[1+\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}\right] /(2 \mathrm{c})\right\}-\sqrt{ }\left\{\left[\left(1+\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}\right) /(2 \mathrm{c})\right]^{2}-\left[\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}\right] / \mathrm{c}\right\} \\
& =\{0.6332\}-\sqrt{ }\left\{[0.6332]^{2}-[0.1397 / 0.9]\right\} \\
& =0.6332-0.4956 \\
& =0.1375 \\
& \mathrm{~F}^{\prime}{ }_{\mathrm{c}}=\mathrm{F}_{\mathrm{c}}{ }^{*}\left(\mathrm{C}_{\mathrm{P}}\right)=(1930.85 \mathrm{psi})(0.1375)=265.5770 \mathrm{psi} \\
& \mathrm{P}=\left(\mathrm{F}^{\prime}{ }_{\mathrm{c}}\right)(\mathrm{A}) \\
& \mathrm{A}_{\mathrm{req}{ }^{\prime} \mathrm{d}}=\mathrm{P} / \mathrm{F}^{\prime}{ }_{\mathrm{c}}=33,764 \mathrm{lb} / 265.5770 \mathrm{psi}=127.135 \mathrm{in}^{2} \\
& \mathrm{~A}=64.97 \mathrm{in}^{2}<127.135 \mathrm{in}^{2} \therefore \text { NO GOOD } \\
& \text { Try } 63 / 4 " \times 16^{1 / 2 " \prime}\left(A=111.4 \text { in }^{2}\right) \\
& \left.\left(1_{\mathrm{e}} / \mathrm{d}\right)_{\mathrm{x}}=\left[(1.0)\left(40.0^{\prime}\right)(12 \mathrm{in} / \mathrm{ft})\right] / 16.5^{\prime \prime}=29.0909 \text { [controls over }\left(\mathrm{l}_{\mathrm{e}} / \mathrm{d}\right)_{\mathrm{y}}\right] \\
& \left(1_{\mathrm{e}} / \mathrm{d}\right)_{\mathrm{y}}=\left[(1.0)\left(13.333^{\prime}\right)(12 \mathrm{in} / \mathrm{ft})\right] / 6.75=23.7037 \\
& \mathrm{~F}_{\mathrm{c}}=2300 \mathrm{psi} \text { (Glulam ID \#50, S.P.) (p. } 66 \text { NDS Supplement) } \\
& \mathrm{E}_{\text {min }}=980,000 \mathrm{psi} \\
& \mathrm{C}_{\mathrm{D}}=1.15 \text { (for snow load; load combination } \mathrm{D}+\mathrm{S} \text {) } \\
& C_{M}=0.73 \text { for } F_{c} \text { (p. 64, NDS Supplement) }
\end{aligned}
$$

$C_{M}=0.833$ for E and $E_{\text {min }}$ (p. 64, NDS Supplement)
$\mathrm{C}_{\mathrm{t}}=1.0$
$\mathrm{E}^{\prime}{ }_{\text {min }}=\left(\mathrm{E}_{\text {min }}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)=(980,000)(0.833)(1.0)=816,340 \mathrm{psi}$
$\mathrm{c}=0.9$ (glulam)
$\mathrm{F}_{\mathrm{cE}}=\left[0.822 \mathrm{E}^{\prime}{ }_{\mathrm{min}}\right] /\left[\left(1_{\mathrm{e}} / \mathrm{d}\right)^{2}\right]=[(0.822)(816,340 \mathrm{psi})] /\left[(29.0909)^{2}\right]=792.918 \mathrm{psi}$
$\mathrm{F}_{\mathrm{c}}{ }^{*}=\mathrm{F}_{\mathrm{c}}\left(\mathrm{C}_{\mathrm{D}}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)=(2300 \mathrm{psi})(1.15)(0.73)(1.0)=1930.85 \mathrm{psi}$
$\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}=792.918 / 1930.85=0.4107$
$\left[1+\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}\right] /(2 \mathrm{c})=[1+0.4107] /[(2)(0.9)]=0.7837$
$\mathrm{C}_{\mathrm{P}}=\left\{\left[1+\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}\right] /(2 \mathrm{c})\right\}-\sqrt{ }\left\{\left[\left(1+\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}\right) /(2 \mathrm{c})\right]^{2}-\left[\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}\right] / \mathrm{c}\right\}$
$=\{0.7837\}-\sqrt{ }\left\{[0.7837]^{2}-[0.4107 / 0.9]\right\}$
$=0.7837-0.3974$
$=0.3863$
$\mathrm{F}_{\mathrm{c}}{ }^{\prime}=\mathrm{F}_{\mathrm{c}}{ }^{*}\left(\mathrm{C}_{\mathrm{P}}\right)=(1930.85 \mathrm{psi})(0.3863)=745.956 \mathrm{psi}$
$\mathrm{P}=\left(\mathrm{F}^{\prime}{ }_{\mathrm{c}}\right)(\mathrm{A})$
$\mathrm{A}_{\mathrm{req}{ }^{\prime} \mathrm{d}}=\mathrm{P} / \mathrm{F}^{\prime}{ }_{\mathrm{c}}=33,764 \mathrm{lb} / 745.956 \mathrm{psi}=45.263 \mathrm{in}^{2}$
$\mathrm{A}=111.4 \mathrm{in}^{2}>45.263 \mathrm{in}^{2} \therefore \mathbf{O K}$
Try $63 / 4 " \times 151 / 8^{\prime \prime}\left(A=102.1\right.$ in $\left.^{2}\right)$
$\left(l_{\mathrm{e}} / \mathrm{d}\right)_{\mathrm{x}}=\left[(1.0)\left(40.0^{\prime}\right)(12 \mathrm{in} / \mathrm{ft})\right] / 15.125^{\prime \prime}=31.7355\left[\right.$ controls over $\left.\left(\mathrm{l}_{\mathrm{e}} / \mathrm{d}\right)_{\mathrm{y}}\right]$

$$
\left(l_{\mathrm{e}} / \mathrm{d}\right)_{\mathrm{y}}=\left[(1.0)\left(13.333^{\prime}\right)(12 \mathrm{in} / \mathrm{ft})\right] / 6.75=23.7037
$$

$\mathrm{F}_{\mathrm{c}}=2300 \mathrm{psi}$ (Glulam ID \#50, S.P.) (p. 66 NDS Supplement)
$\mathrm{E}_{\text {min }}=980,000 \mathrm{psi}$
$\mathrm{C}_{\mathrm{D}}=1.15$ (for snow load; load combination $\mathrm{D}+\mathrm{S}$)
$\mathrm{C}_{\mathrm{M}}=0.73$ for F_{c} (p. 64, NDS Supplement)
$\mathrm{C}_{\mathrm{M}}=0.833$ for E and $\mathrm{E}_{\text {min }}$ (p. 64, NDS Supplement)
$\mathrm{C}_{\mathrm{t}}=1.0$
$\mathrm{E}^{\prime}{ }_{\text {min }}=\left(\mathrm{E}_{\text {min }}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)=(980,000)(0.833)(1.0)=816,340 \mathrm{psi}$
$\mathrm{c}=0.9$ (glulam)
$\mathrm{F}_{\mathrm{cE}}=\left[0.822 \mathrm{E}{ }^{\prime}{ }_{\text {min }}\right] /\left[\left(\mathrm{l}_{\mathrm{d}} / \mathrm{d}\right)^{2}\right]=[(0.822)(816,340 \mathrm{psi})] /\left[(31.7355)^{2}\right]=666.2714 \mathrm{psi}$
$\mathrm{F}_{\mathrm{c}}{ }^{*}=\mathrm{F}_{\mathrm{c}}\left(\mathrm{C}_{\mathrm{D}}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)=(2300 \mathrm{psi})(1.15)(0.73)(1.0)=1930.85 \mathrm{psi}$
$\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}=666.2714 / 1930.85=0.3451$
$\left[1+\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}\right] /(2 \mathrm{c})=[1+0.3451] /[(2)(0.9)]=0.7473$
$\mathrm{C}_{\mathrm{P}}=\left\{\left[1+\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}\right] /(2 \mathrm{c})\right\}-\sqrt{ }\left\{\left[\left(1+\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}\right) /(2 \mathrm{c})\right]^{2}-\left[\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}\right] / \mathrm{c}\right\}$
$=\{0.7473\}-\sqrt{ }\left\{[0.7473]^{2}-[0.3451 / 0.9]\right\}$
$=0.7473-0.4183$
$=0.3289$
$\mathrm{F}^{\prime}{ }_{\mathrm{c}}=\mathrm{F}_{\mathrm{c}}{ }^{*}\left(\mathrm{C}_{\mathrm{P}}\right)=(1930.85 \mathrm{psi})(0.3289)=635.138 \mathrm{psi}$
$\mathrm{P}=\left(\mathrm{F}^{\prime}{ }_{\mathrm{c}}\right)(\mathrm{A})$
$\mathrm{A}_{\mathrm{req}{ }^{\prime} \mathrm{d}}=\mathrm{P} / \mathrm{F}^{\prime}{ }_{\mathrm{c}}=33,764 \mathrm{lb} / 635.138 \mathrm{psi}=53.160 \mathrm{in}^{2}$
$\mathrm{A}=111.4 \mathrm{in}^{2}>53.16 \mathrm{in}^{2} \therefore \mathrm{OK}$
Try $63 / 4$ " $\times 133 / 4$ " $\left(A=92.81 \mathrm{in}^{2}\right)$
$\left(1_{\mathrm{e}} / \mathrm{d}\right)_{\mathrm{x}}=\left[(1.0)\left(40.0^{\prime}\right)(12 \mathrm{in} / \mathrm{ft})\right] / 13.75^{\prime \prime}=34.9091\left(\right.$ controls over $\left.\left(\mathrm{l}_{\mathrm{e}} / \mathrm{d}\right)_{\mathrm{y}}\right)$

$$
\left(\mathrm{l}_{\mathrm{e}} / \mathrm{d}\right)_{\mathrm{y}}=[(1.0)(13.333 ’)(12 \mathrm{in} / \mathrm{ft})] / 6.75=23.7037
$$

$\mathrm{F}_{\mathrm{c}}=2300 \mathrm{psi}$ (Glulam ID \#50, S.P.) (p. 66 NDS Supplement)
$\mathrm{E}_{\text {min }}=980,000 \mathrm{psi}$
$\mathrm{C}_{\mathrm{D}}=1.15$ (for snow load; load combination $\mathrm{D}+\mathrm{S}$)
$C_{M}=0.73$ for F_{c} (p. 64, NDS Supplement)
$C_{M}=0.833$ for E and $E_{\text {min }}$ (p. 64, NDS Supplement)
$\mathrm{C}_{\mathrm{t}}=1.0$
$\mathrm{E}^{\prime}{ }_{\text {min }}=\left(\mathrm{E}_{\text {min }}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)=(980,000)(0.833)(1.0)=816,340 \mathrm{psi}$
$\mathrm{c}=0.9$ (glulam)
$\mathrm{F}_{\mathrm{cE}}=\left[0.822 \mathrm{E}{ }^{\prime}{ }_{\text {min }}\right] /\left[(1 / \mathrm{d})^{2}\right]=[(0.822)(816,340 \mathrm{psi})] /\left[(34.9091)^{2}\right]=550.6375 \mathrm{psi}$
$\mathrm{F}_{\mathrm{c}}{ }^{*}=\mathrm{F}_{\mathrm{c}}\left(\mathrm{C}_{\mathrm{D}}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)=(2300 \mathrm{psi})(1.15)(0.73)(1.0)=1930.85 \mathrm{psi}$

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}=550.6375 / 1930.85=0.2852 \\
& {\left[1+\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}\right] /(2 \mathrm{c})=[1+0.2852] /[(2)(0.9)]=0.7140} \\
& \mathrm{C}_{\mathrm{P}}=\left\{\left[1+\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}\right] /(2 \mathrm{c})\right\}-\sqrt{ }\left\{\left[\left(1+\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}\right) /(2 \mathrm{c})\right]^{2}-\left[\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}\right] / \mathrm{c}\right\} \\
& =\{0.7140\}-\sqrt{ }\left\{[0.7140]^{2}-[0.2852 / 0.9]\right\} \\
& =0.7140-0.4392 \\
& =0.2748 \\
& \mathrm{~F}^{\prime}{ }_{\mathrm{c}}=\mathrm{F}_{\mathrm{c}}{ }^{*}\left(\mathrm{C}_{\mathrm{P}}\right)=(1930.85 \mathrm{psi})(0.2748)=530.5371 \mathrm{psi} \\
& \mathrm{P}=\left(\mathrm{F}^{\prime}{ }_{\mathrm{c}}\right)(\mathrm{A}) \\
& \mathrm{A}_{\mathrm{req}{ }^{\prime d}}=\mathrm{P} / \mathrm{F}^{\prime}{ }_{\mathrm{c}}=33,764 \mathrm{lb} / 530.5371 \mathrm{psi}=63.641 \mathrm{in}^{2} \\
& \mathrm{~A}=92.81 \mathrm{in}^{2}>63.64 \mathrm{in}^{2} \therefore \text { OK } \\
& \text { Try } 63 / 4 " \times 123 / 8^{\prime \prime}\left(A=83.53 \text { in }^{2}\right) \\
& \left(1_{e} / \mathrm{d}\right)_{\mathrm{x}}=\left[(1.0)\left(40.0^{\prime}\right)(12 \mathrm{in} / \mathrm{ft})\right] / 12.375^{\prime \prime}=38.7879\left(\text { controls over }\left(\mathrm{l}_{\mathrm{e}} / \mathrm{d}\right)_{\mathrm{y}}\right) \\
& \left(\mathrm{l}_{\mathrm{e}} / \mathrm{d}\right)_{\mathrm{y}}=\left[(1.0)\left(13.333^{\prime}\right)(12 \mathrm{in} / \mathrm{ft})\right] / 6.75=23.7037 \\
& \mathrm{~F}_{\mathrm{c}}=2300 \mathrm{psi} \text { (Glulam ID \#50, S.P.) (p. } 66 \text { NDS Supplement) } \\
& \mathrm{E}_{\text {min }}=980,000 \mathrm{psi} \\
& \mathrm{C}_{\mathrm{D}}=1.15 \text { (for snow load; load combination } \mathrm{D}+\mathrm{S} \text {) } \\
& \mathrm{C}_{\mathrm{M}}=0.73 \text { for } \mathrm{F}_{\mathrm{c}} \text { (p. 64, NDS Supplement) } \\
& C_{M}=0.833 \text { for } E \text { and } E_{\text {min }} \text { (p. 64, NDS Supplement) } \\
& \mathrm{C}_{\mathrm{t}}=1.0 \\
& \mathrm{E}^{\prime}{ }_{\text {min }}=\left(\mathrm{E}_{\text {min }}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)=(980,000)(0.833)(1.0)=816,340 \mathrm{psi} \\
& \mathrm{c}=0.9 \text { (glulam) } \\
& \mathrm{F}_{\mathrm{cE}}=\left[0.822 \mathrm{E}^{\prime}{ }_{\text {min }}\right] /\left[\left(1_{\mathrm{e}} / \mathrm{d}\right)^{2}\right]=[(0.822)(816,340 \mathrm{psi})] /\left[(38.7879)^{2}\right]=446.016 \mathrm{psi} \\
& \mathrm{~F}_{\mathrm{c}}{ }^{*}=\mathrm{F}_{\mathrm{c}}\left(\mathrm{C}_{\mathrm{D}}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)=(2300 \mathrm{psi})(1.15)(0.73)(1.0)=1930.85 \mathrm{psi} \\
& \mathrm{~F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}=446.016 / 1930.85=0.2310 \\
& {\left[1+\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}\right] /(2 \mathrm{c})=[1+0.2310] /[(2)(0.9)]=0.6839} \\
& \mathrm{C}_{\mathrm{P}}=\left\{\left[1+\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}\right] /(2 \mathrm{c})\right\}-\sqrt{ }\left\{\left[\left(1+\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}\right) /(2 \mathrm{c})\right]^{2}-\left[\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}\right] / \mathrm{c}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& =\{0.6839\}-\sqrt{ }\left\{[0.6839]^{2}-[0.2310 / 0.9]\right\} \\
& =0.6839-0.4594 \\
& =0.2245
\end{aligned}
$$

$$
\mathrm{F}_{\mathrm{c}}^{\prime}=\mathrm{F}_{\mathrm{c}}^{*}\left(\mathrm{C}_{\mathrm{P}}\right)=(1930.85 \mathrm{psi})(0.2245)=433.468 \mathrm{psi}
$$

$$
\mathrm{P}=\left(\mathrm{F}_{\mathrm{c}}{ }_{\mathrm{c}}\right)(\mathrm{A})
$$

$$
\mathrm{A}_{\mathrm{req}{ }^{\prime} \mathrm{d}}=\mathrm{P} / \mathrm{F}^{\prime}{ }_{\mathrm{c}}=33,764 \mathrm{lb} / 433.468 \mathrm{psi}=77.893 \mathrm{in}^{2}
$$

$$
\mathrm{A}=83.53 \mathrm{in}^{2}>77.89 \mathrm{in}^{2} \therefore \mathbf{O K}
$$

Use 6 3/4" x 12 3/8"

$$
\begin{aligned}
& \text { Try } 63 / 4 \text { " } \times 11 \text { " }\left(A=74.25 \text { in }^{2}\right) \\
& \left.\left(1_{\mathrm{e}} / \mathrm{d}\right)_{\mathrm{x}}=\left[(1.0)\left(40.0{ }^{\prime}\right)(12 \mathrm{in} / \mathrm{ft})\right] / 11^{\prime \prime}=43.6364 \text { [controls over }\left(\mathrm{l}_{\mathrm{e}} / \mathrm{d}\right)_{\mathrm{y}}\right] \\
& \left(1_{\mathrm{e}} / \mathrm{d}\right)_{\mathrm{y}}=\left[(1.0)\left(13.333^{\prime}\right)(12 \mathrm{in} / \mathrm{ft})\right] / 6.75=23.7037 \\
& \mathrm{~F}_{\mathrm{c}}=2300 \mathrm{psi} \text { (Glulam ID \#50, S.P.) (p. } 66 \text { NDS Supplement) } \\
& \mathrm{E}_{\text {min }}=980,000 \mathrm{psi} \\
& \mathrm{C}_{\mathrm{D}}=1.15 \text { (for snow load; load combination } \mathrm{D}+\mathrm{S} \text {) } \\
& C_{M}=0.73 \text { for } F_{c} \text { (p. 64, NDS Supplement) } \\
& C_{M}=0.833 \text { for } E \text { and } E_{\text {min }} \text { (p. 64, NDS Supplement) } \\
& \mathrm{C}_{\mathrm{t}}=1.0 \\
& \mathrm{E}^{\prime}{ }_{\text {min }}=\left(\mathrm{E}_{\text {min }}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)=(980,000)(0.833)(1.0)=816,340 \mathrm{psi} \\
& \mathrm{c}=0.9 \text { (glulam) } \\
& \mathrm{F}_{\mathrm{cE}}=\left[0.822 \mathrm{E}^{\prime}{ }_{\text {min }}\right] /\left[\left(1_{\mathrm{e}} / \mathrm{d}\right)^{2}\right]=[(0.822)(816,340 \mathrm{psi})] /\left[(43.6364)^{2}\right]=352.408 \mathrm{psi} \\
& \mathrm{~F}_{\mathrm{c}}{ }^{*}=\mathrm{F}_{\mathrm{c}}\left(\mathrm{C}_{\mathrm{D}}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)=(2300 \mathrm{psi})(1.15)(0.73)(1.0)=1930.85 \mathrm{psi} \\
& \mathrm{~F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}=352.408 / 1930.85=0.1825 \\
& {\left[1+\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}\right] /(2 \mathrm{c})=[1+0.1825] /[(2)(0.9)]=0.6570} \\
& \mathrm{C}_{\mathrm{P}}=\left\{\left[1+\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}\right] /(2 \mathrm{c})\right\}-\sqrt{ }\left\{\left[\left(1+\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}\right) /(2 \mathrm{c})\right]^{2}-\left[\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}\right] / \mathrm{c}\right\} \\
& =\{0.6570\}-\sqrt{ }\left\{[0.6570]^{2}-[0.1825 / 0.9]\right\}
\end{aligned}
$$

$$
\begin{aligned}
& =0.6570-0.4783 \\
& =0.1786
\end{aligned}
$$

$$
\mathrm{F}_{\mathrm{c}}^{\prime}=\mathrm{F}_{\mathrm{c}}^{*}\left(\mathrm{C}_{\mathrm{P}}\right)=(1930.85 \mathrm{psi})(0.1786)=344.907 \mathrm{psi}
$$

$$
\mathrm{P}=\left(\mathrm{F}^{\prime}{ }_{\mathrm{c}}\right)(\mathrm{A})
$$

$$
\mathrm{A}_{\mathrm{req}{ }^{\prime} \mathrm{d}}=\mathrm{P} / \mathrm{F}^{\prime}{ }_{\mathrm{c}}=33,764 \mathrm{lb} / 344.907 \mathrm{psi}=97.893 \mathrm{in}^{2}
$$

$$
\mathrm{A}=74.25 \mathrm{in}^{2}<97.89 \mathrm{in}^{2} \therefore \text { NO GOOD }
$$

$$
\text { Try } 51 / 2 " \times 133 / 4 "\left(A=75.63 \mathrm{in}^{2}\right)
$$

$$
\left(1_{\mathrm{e}} / \mathrm{d}\right)_{\mathrm{x}}=\left[(1.0)\left(40.0^{\prime}\right)(12 \mathrm{in} / \mathrm{ft})\right] / 13.75^{\prime \prime}=34.9091\left(\text { controls over }\left(1_{\mathrm{e}} / \mathrm{d}\right)_{\mathrm{y}}\right)
$$

$$
\left(1_{\mathrm{e}} / \mathrm{d}\right)_{\mathrm{y}}=\left[(1.0)\left(13.333^{\prime}\right)(12 \mathrm{in} / \mathrm{ft})\right] / 5.5=29.0909
$$

$\mathrm{F}_{\mathrm{c}}=2300 \mathrm{psi}$ (Glulam ID \#50, S.P.) (p. 66 NDS Supplement)
$\mathrm{E}_{\text {min }}=980,000 \mathrm{psi}$
$\mathrm{C}_{\mathrm{D}}=1.15$ (for snow load; load combination $\mathrm{D}+\mathrm{S}$)
$C_{M}=0.73$ for F_{c} (p. 64, NDS Supplement)
$C_{M}=0.833$ for E and $E_{\text {min }}$ (p. 64, NDS Supplement)
$\mathrm{C}_{\mathrm{t}}=1.0$
$\mathrm{E}^{\prime}{ }_{\text {min }}=\left(\mathrm{E}_{\text {min }}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)=(980,000)(0.833)(1.0)=816,340 \mathrm{psi}$
$\mathrm{c}=0.9$ (glulam)
$\mathrm{F}_{\mathrm{cE}}=\left[0.822 \mathrm{E}^{\prime}{ }_{\text {min }}\right] /\left[\left(\mathrm{l}_{\mathrm{e}} / \mathrm{d}\right)^{2}\right]=[(0.822)(816,340 \mathrm{psi})] /\left[(34.9091)^{2}\right]=550.6375 \mathrm{psi}$
$\mathrm{F}_{\mathrm{c}}{ }^{*}=\mathrm{F}_{\mathrm{c}}\left(\mathrm{C}_{\mathrm{D}}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)=(2300 \mathrm{psi})(1.15)(0.73)(1.0)=1930.85 \mathrm{psi}$
$\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}=550.6375 / 1930.85=0.2852$
$\left[1+\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}\right] /(2 \mathrm{c})=[1+0.2852] /[(2)(0.9)]=0.7140$
$\mathrm{C}_{\mathrm{P}}=\left\{\left[1+\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}\right] /(2 \mathrm{c})\right\}-\sqrt{ }\left\{\left[\left(1+\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}\right) /(2 \mathrm{c})\right]^{2}-\left[\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}\right] / \mathrm{c}\right\}$
$=\{0.7140\}-\sqrt{ }\left\{[0.7140]^{2}-[0.2852 / 0.9]\right\}$
$=0.7140-0.4392$
$=0.2748$
$\mathrm{F}^{\prime}{ }_{\mathrm{c}}=\mathrm{F}_{\mathrm{c}}{ }^{*}\left(\mathrm{C}_{\mathrm{P}}\right)=(1930.85 \mathrm{psi})(0.2748)=530.537 \mathrm{psi}$
$\mathrm{P}=\left(\mathrm{F}^{\prime}{ }_{\mathrm{c}}\right)(\mathrm{A})$
$\mathrm{A}_{\mathrm{req}{ }^{\prime} \mathrm{d}}=\mathrm{P} / \mathrm{F}^{\prime}{ }_{\mathrm{c}}=33,764 \mathrm{lb} / 530.537 \mathrm{psi}=63.641 \mathrm{in}^{2}$
$\mathrm{A}=75.63 \mathrm{in}^{2}>63.64 \mathrm{in}^{2} \therefore$ OK
Try $51 / 2 " \times 123 / 8 "\left(A=68.06\right.$ in $\left.^{2}\right)$
$\left(1_{\mathrm{e}} / \mathrm{d}\right)_{\mathrm{x}}=\left[(1.0)\left(40.0^{\prime}\right)(12 \mathrm{in} / \mathrm{ft})\right] / 12.375^{\prime \prime}=38.7879\left(\right.$ controls over $\left.\left(\mathrm{l}_{\mathrm{e}} / \mathrm{d}\right)_{\mathrm{y}}\right)$

$$
\left(1_{\mathrm{e}} / \mathrm{d}\right)_{\mathrm{y}}=\left[(1.0)\left(13.333^{\prime}\right)(12 \mathrm{in} / \mathrm{ft})\right] / 5.5=29.0909
$$

$\mathrm{F}_{\mathrm{c}}=2300 \mathrm{psi}$ (Glulam ID \#50, S.P.) (p. 66 NDS Supplement)
$\mathrm{E}_{\text {min }}=980,000 \mathrm{psi}$
$\mathrm{C}_{\mathrm{D}}=1.15$ (for snow load; load combination $\mathrm{D}+\mathrm{S}$)
$C_{M}=0.73$ for F_{c} (p. 64, NDS Supplement)
$C_{M}=0.833$ for E and $E_{\text {min }}$ (p. 64, NDS Supplement)
$\mathrm{C}_{\mathrm{t}}=1.0$
$\mathrm{E}^{\prime}{ }_{\text {min }}=\left(\mathrm{E}_{\text {min }}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)=(980,000)(0.833)(1.0)=816,340 \mathrm{psi}$
$\mathrm{c}=0.9$ (glulam)
$\mathrm{F}_{\mathrm{cE}}=\left[0.822 \mathrm{E}^{\prime}{ }_{\text {min }}\right] /\left[\left(1_{\mathrm{e}} / \mathrm{d}\right)^{2}\right]=[(0.822)(816,340 \mathrm{psi})] /\left[(38.7879)^{2}\right]=446.016 \mathrm{psi}$
$\mathrm{F}_{\mathrm{c}}{ }^{*}=\mathrm{F}_{\mathrm{c}}\left(\mathrm{C}_{\mathrm{D}}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)=(2300 \mathrm{psi})(1.15)(0.73)(1.0)=1930.85 \mathrm{psi}$
$\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}=446.016 / 1930.85=0.2310$
$\left[1+\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}\right] /(2 \mathrm{c})=[1+0.2310] /[(2)(0.9)]=0.6839$
$\mathrm{C}_{\mathrm{P}}=\left\{\left[1+\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}\right] /(2 \mathrm{c})\right\}-\sqrt{ }\left\{\left[\left(1+\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}\right) /(2 \mathrm{c})\right]^{2}-\left[\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}\right] / \mathrm{c}\right\}$
$=\{0.6839\}-\sqrt{ }\left\{[0.6839]^{2}-[0.2310 / 0.9]\right\}$
$=0.6839-0.4594$
$=0.2245$
$\mathrm{F}_{\mathrm{c}}{ }^{\prime}=\mathrm{F}_{\mathrm{c}}{ }^{*}\left(\mathrm{C}_{\mathrm{P}}\right)=(1930.85 \mathrm{psi})(0.2245)=433.468 \mathrm{psi}$
$\mathrm{P}=\left(\mathrm{F}^{\prime}{ }_{\mathrm{c}}\right)(\mathrm{A})$
$\mathrm{A}_{\mathrm{req}{ }^{\prime} \mathrm{d}}=\mathrm{P} / \mathrm{F}^{\prime}{ }_{\mathrm{c}}=33,764 \mathrm{lb} / 433.468 \mathrm{psi}=77.893 \mathrm{in}^{2}$
$\mathrm{A}=68.06 \mathrm{in}^{2}>77.89 \mathrm{in}^{2} \therefore$ N.G.

LOAD COMBINATION: D+W (Combined Bending and Axial Forces)

Try 6 3/4" $\times 16$ 1⁄2"
$\mathrm{F}_{\mathrm{c}}=2300 \mathrm{psi}$ (Glulam ID \#50, S.P.) (p. 66 NDS Supplement)
$\mathrm{F}_{\mathrm{b}}=2100 \mathrm{psi}$ (Glulam ID \#50, S.P.) (p. 66 NDS Supplement)
$\mathrm{A}=111.4 \mathrm{in}^{2}$
$\mathrm{S}=306.3 \mathrm{in}^{3}$
$\mathrm{E}_{\text {min }}=980,000 \mathrm{psi}$
Axial Load: $\mathrm{P}=12,438 \mathrm{lb}$ (Compression)
Maximum Moment:

$$
\mathrm{W}=26.85 \mathrm{k}+51.49 \mathrm{k}+44.89 \mathrm{k}=123.23 \mathrm{k}
$$

$$
(123.23 \mathrm{k}) /\left[\left(156^{\prime}\right)\left(40^{\prime}\right)\right]=0.019748 \mathrm{ksf}=19.7484 \mathrm{psf}
$$

$$
\mathrm{w}=(19.7484 \mathrm{psf})\left(8^{\prime}\right)=157.987 \mathrm{lb} / \mathrm{ft}=0.157987 \mathrm{k} / \mathrm{ft}
$$

$$
\mathrm{M}_{\max }=\mathrm{wL}^{2} / 8=(0.157987 \mathrm{k} / \mathrm{ft})\left(40^{\prime}\right)^{2} / 8=31.599 \mathrm{k}-\mathrm{ft}=31,599 \mathrm{ft}-\mathrm{lb}=379,188 \mathrm{in}-\mathrm{lb}
$$

$\mathrm{L}=40.0^{\prime}$

Axial Load:
$\mathrm{f}_{\mathrm{c}}=\mathrm{P} / \mathrm{A}=12,438 \mathrm{lb} / 111.4 \mathrm{in}^{2}=111.652 \mathrm{psi}$
$\left(1_{\mathrm{e}} / \mathrm{d}\right)_{x}=\left[\left(40^{\prime}\right)(12 \mathrm{in} / \mathrm{ft})\right] / 16.5^{\prime \prime}=29.0909<50 \therefore$ OK
$\left(1_{\mathrm{e}} / \mathrm{d}\right)_{y}=\left[\left(13.333^{\prime}\right)(12 \mathrm{in} / \mathrm{ft})\right] / 6.75^{\prime \prime}=23.7037<50 \quad \therefore$ OK
$\left(\mathrm{l}_{\mathrm{e}} / \mathrm{d}\right)_{\max }=\left(\mathrm{l}_{\mathrm{e}} / \mathrm{d}\right)_{\mathrm{x}}=29.0909$
The larger slenderness ratio governs the adjusted design value. Therefore, the strong axis of the member is critical, and $\left(l_{e} / d\right)_{x}$ is used to determine $F^{\prime}{ }_{c}$.
$\mathrm{C}_{\mathrm{D}}=1.6$ (for wind load; load combination $\mathrm{D}+\mathrm{W}$)
$C_{M}=0.73$ for F_{c} (p. 64, NDS Supplement)
$C_{M}=0.833$ for E and $E_{\text {min }}$ (p. 64, NDS Supplement)

$$
\begin{aligned}
& C_{M}=0.8 \text { for } F_{b}(p .64, \text { NDS Supplement }) \\
& C_{t}=1.0 \\
& E^{\prime}{ }_{\min }=\left(E_{\min }\right)\left(C_{M}\right)\left(C_{t}\right)=(980,000)(0.833)(1.0)=816,340 \mathrm{psi} \\
& c=0.9(\text { glulam }) \\
& F_{c E}=\left[0.822 E_{\min }^{\prime}\right] /\left[\left(l_{\mathrm{e}} / \mathrm{d}\right)^{2}\right]=[(0.822)(816,340 \mathrm{psi})] /\left[(29.0909)^{2}\right]=792.919 \mathrm{psi}
\end{aligned}
$$

Here, $l_{\mathrm{e}} / \mathrm{d}$ is based on $\left(l_{\mathrm{e}} / \mathrm{d}\right)_{\max }$.
$\mathrm{F}_{\mathrm{c}}{ }^{*}=\mathrm{F}_{\mathrm{c}}\left(\mathrm{C}_{\mathrm{D}}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)=(2300 \mathrm{psi})(1.6)(0.73)(1.0)=2686.4 \mathrm{psi}$
$\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}=792.919 / 2686.4=0.2952$
$\left[1+\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}\right] /(2 \mathrm{c})=[1+0.2952] /[(2)(0.9)]=0.7195$
$\mathrm{C}_{\mathrm{P}}=\left\{\left[1+\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}\right] /(2 \mathrm{c})\right\}-\sqrt{ }\left\{\left[\left(1+\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}\right) /(2 \mathrm{c})\right]^{2}-\left[\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}\right] / \mathrm{c}\right\}$
$=\{0.7195\}-\sqrt{ }\left\{[0.7195]^{2}-[0.2952 / 0.9]\right\}$
$=0.2839$
$\mathrm{F}^{\prime}{ }_{\mathrm{c}}=\mathrm{F}_{\mathrm{c}}{ }^{*}\left(\mathrm{C}_{\mathrm{P}}\right)=(2686.4 \mathrm{psi})(0.2839)=762.727 \mathrm{psi}$
Axial stress ratio $=f_{c} / F^{\prime}{ }_{c}=(111.652 \mathrm{psi}) /(762.727 \mathrm{psi})=0.1464$

Net Section Check:

Assume connections will be made with (2) rows of $3 / 4$ " diameter bolts.
Assume the hole diameter is $1 / 16 "$ larger than the bolt (for stress calculations only).

$$
\begin{aligned}
& \mathrm{A}_{\mathrm{n}}=(6.75 ")\left[16.5^{\prime \prime}-(2)\left(0.8125^{\prime \prime}\right)\right]=97.03 \mathrm{in}^{2} \\
& \qquad\left(3 / 4 "+1 / 16^{\prime \prime}=0.8125^{\prime \prime}\right) \\
& \mathrm{f}_{\mathrm{c}}=\mathrm{P} / \mathrm{A}_{\mathrm{n}}=12,438 \mathrm{lb} / 97.03 \mathrm{in}^{2}=128.187 \mathrm{psi} \\
& \mathrm{~F}_{\mathrm{c}}{ }^{\prime}=\mathrm{F}_{\mathrm{c}}{ }^{*}=\mathrm{F}_{\mathrm{c}}\left(\mathrm{C}_{\mathrm{D}}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)\left(\mathrm{C}_{\mathrm{P}}\right)=(2300 \mathrm{psi})(1.6)(0.73)(1.0)(0.2839)=762.669 \mathrm{psi} \\
& \quad 762.669 \mathrm{psi}>128.187 \mathrm{psi} \therefore \mathrm{OK}
\end{aligned}
$$

Bending:

Bending is about the strong axis of the cross section. The adjusted bending design value for a glulam is governed by the smaller of two criteria: volume effect or lateral stability.
$\mathrm{M}=379,188 \mathrm{in}-\mathrm{lb}$
$\mathrm{S}=306.3 \mathrm{in}^{3}$
$\mathrm{f}_{\mathrm{b}}=\mathrm{M} / \mathrm{S}=379,188 \mathrm{in}-\mathrm{lb} / 306.3 \mathrm{in}^{3}=1237.963 \mathrm{psi}$
$\mathrm{F}_{\mathrm{b}}{ }^{\prime}=\mathrm{F}_{\mathrm{b}}\left(\mathrm{C}_{\mathrm{D}}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)\left(\mathrm{C}_{\mathrm{L}}\right)$ or
$\mathrm{F}_{\mathrm{b}}{ }^{\prime}=\mathrm{F}_{\mathrm{b}}\left(\mathrm{C}_{\mathrm{D}}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)\left(\mathrm{C}_{\mathrm{V}}\right)$
For $\mathrm{C}_{\mathrm{L}}: 1_{\mathrm{u}} / \mathrm{d}=\left[\left(13.333^{\prime}\right)(12 \mathrm{in} / \mathrm{ft})\right] / 16.5^{\prime \prime}=9.697>7$

$$
\begin{aligned}
& \therefore 1_{\mathrm{e}}=1.631_{\mathrm{u}}+3 \mathrm{~d}=(1.63)\left[\left(13.333^{\prime}\right)(12 \mathrm{in} / \mathrm{ft})\right]+(3)\left(16.5^{\prime \prime}\right)=310.30^{\prime \prime} \\
& \mathrm{R}_{\mathrm{B}}=\sqrt{ } \mathrm{l}_{\mathrm{e}} \mathrm{~d} / \mathrm{b}^{2}=\sqrt{ }\left[\left(310.30^{\prime \prime}\right)\left(16.5^{\prime \prime}\right) /\left(6.75^{\prime \prime}\right)^{2}\right]=10.601 \\
& \mathrm{~F}_{\mathrm{bE}}=1.20 \mathrm{E}^{\prime}{ }_{\min } / \mathrm{R}_{\mathrm{B}}^{2}=[(1.20)(816,340 \mathrm{psi})] /(10.601)^{2}=8717.544 \mathrm{psi} \\
& \mathrm{~F}_{\mathrm{b}}=\mathrm{F}_{\mathrm{b}}\left(\mathrm{C}_{\mathrm{D}}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)=(2100 \mathrm{psi})(1.6)(0.8)(1.0)=2688 \mathrm{psi} \\
& \mathrm{~F}_{\mathrm{bE}} / \mathrm{F}^{*}{ }_{\mathrm{b}}=(8717.544) /(2688)=3.2431 \\
& \left(1+\mathrm{F}_{\mathrm{bE}} / \mathrm{F}^{*}{ }_{\mathrm{b}}\right) / 1.9=(1+3.2431) / 1.9=2.233 \\
& \mathrm{C}_{\mathrm{L}}=\left[\left(1+\mathrm{F}_{\mathrm{bE}} / \mathrm{F}^{*}{ }_{\mathrm{b}}\right) / 1.9\right]-\sqrt{ }\left\{\left[\left(1+\mathrm{F}_{\mathrm{bE}} / \mathrm{F}^{*}{ }_{\mathrm{b}}\right) / 1.9\right]^{2}-\left[\mathrm{F}_{\mathrm{bE}} / \mathrm{F}^{*} / 0.95\right]\right\} \\
& \left.\quad=2.233-\sqrt{ }(2.233)^{2}-(3.2431 / 0.95)\right]=0.9786
\end{aligned}
$$

For Southern Pine glulam:

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{V}}=\left(21^{\prime} / \mathrm{L}\right)^{1 / 20}\left(12^{\prime \prime} / \mathrm{d}\right)^{1 / 20}\left(5.125^{\prime \prime} / \mathrm{b}\right)^{1 / 20} \leq 1.0 \\
& \mathrm{C}_{\mathrm{V}}=\left(21^{\prime} / 40^{\prime}\right)^{1 / 20}\left(12^{\prime \prime} / 16.5^{\prime \prime}\right)^{1 / 20}\left(5.125^{\prime \prime} / 6.75^{\prime \prime}\right)^{1 / 20} \leq 1.0 \\
& \mathrm{C}_{\mathrm{V}}=0.9400 \leq 1.0
\end{aligned}
$$

C_{V} governs of C_{L}
$\mathrm{F}_{\mathrm{b}}{ }^{\prime}=\mathrm{F}_{\mathrm{b}}{ }_{\mathrm{b}}\left(\mathrm{C}_{\mathrm{V}}\right)=(2688 \mathrm{psi})(0.9400)=2526.72 \mathrm{psi}$
Bending stress ratio $=\mathrm{f}_{\mathrm{b}} / \mathrm{F}_{\mathrm{b}}=(1237.98 \mathrm{psi}) /(2526.72 \mathrm{psi})=0.4830$

Combined Stresses:

The bending moment is about the strong axis of the cross section, and the amplification for $\mathrm{P}-\Delta$ is measured by the column slenderness ratio about the x axis.
$\left(1_{\mathrm{e}} / \mathrm{d}\right)_{\text {bending moment }}=\left(1_{\mathrm{e}} / \mathrm{d}\right)_{\mathrm{x}}=29.0909$
$\mathrm{F}_{\mathrm{cEx}}=\left[0.822 \mathrm{E}^{\prime}{ }_{\text {min }}\right] /\left[\left(1_{\mathrm{e}} / \mathrm{d}\right)_{\mathrm{x}}\right]^{2}=[(0.822)(816,340 \mathrm{psi})] /\left[(29.0909)^{2}\right]=792.919 \mathrm{psi}$
*Here, $\left(l_{\mathrm{e}} / \mathrm{d}\right)$ is based on the axis about which the bending moment occurs.
Amplification factor $=1 /\left[1-\left(\mathrm{f}_{\mathrm{c}} / \mathrm{F}_{\mathrm{cEx}}\right)\right]=1 /[1-(111.652 \mathrm{psi} / 792.919 \mathrm{psi})]=1.1639$
$\left(\mathrm{f}_{\mathrm{c}} / \mathrm{F}^{\prime}{ }_{\mathrm{c}}\right)^{2}+\left\{1 /\left[1-\left(\mathrm{f}_{\mathrm{c}} / \mathrm{F}_{\mathrm{cEx}}\right)\right]\right\}\left(\mathrm{f}_{\mathrm{b}} / \mathrm{F}^{\prime}{ }_{\mathrm{b}}\right)=(0.1464)^{2}+(1.1639)(0.4830)=0.5836<1.0 \therefore$ OK
Try 6 3/4" $\times 15$ 1/8"
$\mathrm{F}_{\mathrm{c}}=2300 \mathrm{psi}$ (Glulam ID \#50, S.P.) (p. 66 NDS Supplement)
$\mathrm{F}_{\mathrm{b}}=2100 \mathrm{psi}$ (Glulam ID \#50, S.P.) (p. 66 NDS Supplement)
$\mathrm{A}=102.1 \mathrm{in}^{2}$
$\mathrm{S}=257.4 \mathrm{in}^{3}$
$\mathrm{E}_{\text {min }}=980,000 \mathrm{psi}$
Axial Load: $\mathrm{P}=12,438 \mathrm{lb}$ (Compression)
Maximum Moment: $\mathrm{M}_{\max }=379,188 \mathrm{in}-\mathrm{lb}$
$\mathrm{L}=40.0^{\prime}$

Axial Load:
$\mathrm{f}_{\mathrm{c}}=\mathrm{P} / \mathrm{A}=12,438 \mathrm{lb} / 102.1 \mathrm{in}^{2}=121.822 \mathrm{psi}$
$\left(l_{\mathrm{e}} / \mathrm{d}\right)_{x}=\left[\left(40^{\prime}\right)(12 \mathrm{in} / \mathrm{ft})\right] / 15.125^{\prime}=31.7355<50 \therefore$ OK
$\left(l_{\mathrm{e}} / \mathrm{d}\right)_{\mathrm{y}}=\left[\left(13.333^{\prime}\right)(12 \mathrm{in} / \mathrm{ft})\right] / 6.75^{\prime}=23.7037<50 \quad \therefore$ OK
$\left(\mathrm{l}_{\mathrm{e}} / \mathrm{d}\right)_{\max }=\left(\mathrm{l}_{\mathrm{e}} / \mathrm{d}\right)_{\mathrm{x}}=31.7355$

The larger slenderness ratio governs the adjusted design value. Therefore, the strong axis of the member is critical, and $\left(l_{e} / d\right)_{x}$ is used to determine F ' ${ }_{c}$.
$\mathrm{C}_{\mathrm{D}}=1.6$ (for wind load; load combination $\mathrm{D}+\mathrm{W}$)
$C_{M}=0.73$ for F_{c} (p. 64, NDS Supplement)
$C_{M}=0.833$ for E and $E_{\text {min }}$ (p. 64, NDS Supplement)
$C_{M}=0.8$ for $F_{b}(p .64$, NDS Supplement $)$
$\mathrm{C}_{\mathrm{t}}=1.0$
$\mathrm{E}^{\prime}{ }_{\text {min }}=\left(\mathrm{E}_{\text {min }}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)=(980,000)(0.833)(1.0)=816,340 \mathrm{psi}$
$\mathrm{c}=0.9$ (glulam)
$\mathrm{F}_{\mathrm{cE}}=\left[0.822 \mathrm{E}_{\text {min }}\right] /\left[\left(\mathrm{l}_{\mathrm{e}} / \mathrm{d}\right)^{2}\right]=[(0.822)(816,340 \mathrm{psi})] /\left[(31.7355)^{2}\right]=666.271 \mathrm{psi}$
Here, $l_{\mathrm{e}} / \mathrm{d}$ is based on $\left(l_{\mathrm{e}} / \mathrm{d}\right)_{\max }$.
$\mathrm{F}_{\mathrm{c}}{ }^{*}=\mathrm{F}_{\mathrm{c}}\left(\mathrm{C}_{\mathrm{D}}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)=(2300 \mathrm{psi})(1.6)(0.73)(1.0)=2686.4 \mathrm{psi}$
$\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}=666.271 / 2686.4=0.2480$
$\left[1+\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}\right] /(2 \mathrm{c})=[1+0.2480] /[(2)(0.9)]=0.6933$
$\mathrm{C}_{\mathrm{P}}=\left\{\left[1+\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}\right] /(2 \mathrm{c})\right\}-\sqrt{ }\left\{\left[\left(1+\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}\right) /(2 \mathrm{c})\right]^{2}-\left[\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}\right] / \mathrm{c}\right\}$
$=\{0.6933\}-\sqrt{ }\left\{[0.6933]^{2}-[0.2480 / 0.9]\right\}$
$=0.2403$
$\mathrm{F}^{\prime}{ }_{\mathrm{c}}=\mathrm{F}_{\mathrm{c}}{ }^{*}\left(\mathrm{C}_{\mathrm{P}}\right)=(2686.4 \mathrm{psi})(0.2403)=645.663 \mathrm{psi}$
Axial stress ratio $=f_{c} / F^{\prime}{ }_{\mathrm{c}}=(121.822 \mathrm{psi}) /(645.663 \mathrm{psi})=0.1887$
Net Section Check:
Assume connections will be made with (2) rows of $3 / 4$ " diameter bolts.
Assume the hole diameter is $1 / 16$ " larger than the bolt (for stress calculations only).

$$
\begin{aligned}
& \mathrm{A}_{\mathrm{n}}=\left(6.75^{\prime \prime}\right)\left[15.125^{\prime \prime}-(2)\left(0.8125^{\prime \prime}\right)\right]=91.125 \mathrm{in}^{2} \\
& \qquad\left(3 / 4 "+1 / 16^{\prime \prime}=0.8125^{\prime \prime}\right) \\
& \mathrm{f}_{\mathrm{c}}=\mathrm{P} / \mathrm{A}_{\mathrm{n}}=12,438 \mathrm{lb} / 91.125 \mathrm{in}^{2}=136.494 \mathrm{psi} \\
& \mathrm{~F}^{\prime}{ }_{\mathrm{c}}=\mathrm{F}_{\mathrm{c}}{ }^{*}=\mathrm{F}_{\mathrm{c}}\left(\mathrm{C}_{\mathrm{D}}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)\left(\mathrm{C}_{\mathrm{P}}\right)=(2300 \mathrm{psi})(1.6)(0.73)(1.0)(0.2403)=645.542 \mathrm{psi} \\
& \quad 645.542 \mathrm{psi}>136.494 \mathrm{psi} \therefore \text { OK }
\end{aligned}
$$

Bending:

Bending is about the strong axis of the cross section. The adjusted bending design value for a glulam is governed by the smaller of two criteria: volume effect or lateral stability.

$$
\begin{aligned}
& \mathrm{M}=379,188 \mathrm{in}-\mathrm{lb} \\
& \mathrm{~S}=257.4 \mathrm{in}^{3} \\
& \mathrm{f}_{\mathrm{b}}=\mathrm{M} / \mathrm{S}=379,188 \mathrm{in}-\mathrm{lb} / 257.4 \mathrm{in}^{3}=1473.147 \mathrm{psi} \\
& \mathrm{~F}_{{ }_{\mathrm{b}}}^{\prime}=\mathrm{F}_{\mathrm{b}}\left(\mathrm{C}_{\mathrm{D}}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)\left(\mathrm{C}_{\mathrm{L}}\right) \text { or } \\
& \mathrm{F}_{{ }_{\mathrm{b}}}^{\prime}=\mathrm{F}_{\mathrm{b}}\left(\mathrm{C}_{\mathrm{D}}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)\left(\mathrm{C}_{\mathrm{V}}\right)
\end{aligned}
$$

For $C_{L}: 1_{\mathrm{u}} / \mathrm{d}=\left[\left(13.333^{\prime}\right)(12 \mathrm{in} / \mathrm{ft})\right] / 15.125^{\prime}=10.579>7$

$$
\begin{aligned}
& \therefore 1_{\mathrm{e}}=1.631_{\mathrm{u}}+3 \mathrm{~d}=(1.63)\left[\left(13.333^{\prime}\right)(12 \mathrm{in} / \mathrm{ft})\right]+(3)\left(15.125^{\prime \prime}\right)=306.17^{\prime \prime} \\
& \mathrm{R}_{\mathrm{B}}=\sqrt{l}_{\mathrm{e}} \mathrm{~d} / \mathrm{b}^{2}=\sqrt{ }\left[\left(306.17^{\prime \prime}\right)\left(15.125^{\prime \prime}\right) /\left(6.75^{\prime \prime}\right)^{2}\right]=10.082 \\
& \mathrm{~F}_{\mathrm{bE}}=1.20 \mathrm{E}_{\min }^{\prime} / \mathrm{R}_{\mathrm{B}}^{2}=[(1.20)(816,340 \mathrm{psi})] /(10.082)^{2}=9638.174 \mathrm{psi} \\
& \mathrm{~F}_{\mathrm{b}}=\mathrm{F}_{\mathrm{b}}\left(\mathrm{C}_{\mathrm{D}}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)=(2100 \mathrm{psi})(1.6)(0.8)(1.0)=2688 \mathrm{psi} \\
& \mathrm{~F}_{\mathrm{bE}} / \mathrm{F}_{\mathrm{b}}=(9638.174) /(2688)=3.5856 \\
& \left(1+\mathrm{F}_{\mathrm{bE}} / \mathrm{F}_{\mathrm{b}}\right) / 1.9=(1+3.5856) / 1.9=2.4135 \\
& \mathrm{C}_{\mathrm{L}}=\left[\left(1+\mathrm{F}_{\mathrm{bE}} / \mathrm{F}_{\mathrm{b}}\right) / 1.9\right]-\sqrt{ }\left\{\left[\left(1+\mathrm{F}_{\mathrm{bE}} / \mathrm{F}_{\mathrm{b}}\right) / 1.9\right]^{2}-\left[\mathrm{F}_{\mathrm{bE}} / \mathrm{F}_{\mathrm{b}} / 0.95\right]\right\} \\
& \left.\quad=2.4135-\sqrt{ }(2.4135)^{2}-(3.5856 / 0.95)\right]=0.9815
\end{aligned}
$$

For Southern Pine glulam:

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{V}}=\left(21^{\prime} / \mathrm{L}\right)^{1 / 20}\left(12^{\prime \prime} / \mathrm{d}\right)^{1 / 20}\left(5.125^{\prime \prime} / \mathrm{b}\right)^{1 / 20} \leq 1.0 \\
& \mathrm{C}_{\mathrm{V}}=\left(21^{\prime} / 40^{\prime}\right)^{1 / 20}\left(12^{\prime \prime} / 15.125^{\prime \prime}\right)^{1 / 20}\left(5.125^{\prime} / 6.75^{\prime}\right)^{1 / 20} \leq 1.0 \\
& \mathrm{C}_{\mathrm{V}}=0.9441 \leq 1.0
\end{aligned}
$$

C_{V} governs of C_{L}
$\mathrm{F}^{\prime}{ }_{\mathrm{b}}=\mathrm{F}^{*}{ }_{\mathrm{b}}\left(\mathrm{C}_{\mathrm{V}}\right)=(2688 \mathrm{psi})(0.9441)=2537.741 \mathrm{psi}$
Bending stress ratio $=\mathrm{f}_{\mathrm{b}} / \mathrm{F}^{\prime}{ }_{\mathrm{b}}=(1473.147 \mathrm{psi}) /(2537.741 \mathrm{psi})=0.5805$

Combined Stresses:

The bending moment is about the strong axis of the cross section, and the amplification for $\mathrm{P}-\Delta$ is measured by the column slenderness ratio about the x axis.
$\left(1_{\mathrm{e}} / \mathrm{d}\right)_{\text {bending moment }}=\left(\mathrm{l}_{\mathrm{e}} / \mathrm{d}\right)_{\mathrm{x}}=31.7355$
$\mathrm{F}_{\mathrm{cEx}}=\left[0.822 \mathrm{E}^{\prime}{ }_{\text {min }}\right] /\left[\left(\mathrm{l}_{\mathrm{e}} / \mathrm{d}\right)_{\mathrm{x}}\right]^{2}=[(0.822)(816,340 \mathrm{psi})] /\left[(31.7355)^{2}\right]=666.271 \mathrm{psi}$
*Here, $\left(l_{\mathrm{e}} / \mathrm{d}\right)$ is based on the axis about which the bending moment occurs.

Amplification factor $=1 /\left[1-\left(f_{c} / F_{c E x}\right)\right]=1 /[1-(121.822 \mathrm{psi} / 666.271 \mathrm{psi})]=1.2238$
$\left(\mathrm{f}_{\mathrm{c}} / \mathrm{F}^{\prime}{ }_{\mathrm{c}}\right)^{2}+\left\{1 /\left[1-\left(\mathrm{f}_{\mathrm{c}} / \mathrm{F}_{\mathrm{cEx}}\right)\right]\right\}\left(\mathrm{f}_{\mathrm{b}} / \mathrm{F}^{\prime}{ }_{\mathrm{b}}\right)=(0.1887)^{2}+(1.2238)(0.5805)=0.746<1.0 \therefore$ OK
Try 6 3/4" $\times 13$ 3/4"
$F_{c}=2300$ psi (Glulam ID \#50, S.P.) (p. 66 NDS Supplement)
$\mathrm{F}_{\mathrm{b}}=2100 \mathrm{psi}$ (Glulam ID \#50, S.P.) (p. 66 NDS Supplement)
$\mathrm{A}=92.81 \mathrm{in}^{2}$
$S_{x}=212.7$ in 3
$\mathrm{E}_{\text {min }}=980,000 \mathrm{psi}$
Axial Load: $\mathrm{P}=12,438 \mathrm{lb}$ (Compression)

Maximum Moment: $\mathrm{M}_{\max }=379,188$ in- lb
$\mathrm{L}=40.0^{\prime}$

Axial Load:
$\mathrm{f}_{\mathrm{c}}=\mathrm{P} / \mathrm{A}=12,438 \mathrm{lb} / 92.81 \mathrm{in}^{2}=134.016 \mathrm{psi}$
$\left(1_{\mathrm{e}} / \mathrm{d}\right)_{\mathrm{x}}=\left[\left(40^{\prime}\right)(12 \mathrm{in} / \mathrm{ft})\right] / 13.75^{\prime \prime}=34.9091<50 \therefore$ OK
$\left(1_{\mathrm{e}} / \mathrm{d}\right)_{\mathrm{y}}=\left[\left(13.333^{\prime}\right)(12 \mathrm{in} / \mathrm{ft})\right] / 6.75^{\prime \prime}=23.7037<50 \quad \therefore$ OK
$\left(l_{\mathrm{e}} / \mathrm{d}\right)_{\max }=\left(\mathrm{l}_{\mathrm{e}} / \mathrm{d}\right)_{\mathrm{x}}=34.9091$
The larger slenderness ratio governs the adjusted design value. Therefore, the strong axis of the member is critical, and $\left(l_{\mathrm{e}} / \mathrm{d}\right)_{\mathrm{x}}$ is used to determine F ' .
$\mathrm{C}_{\mathrm{D}}=1.6$ (for wind load; load combination $\mathrm{D}+\mathrm{W}$)
$C_{M}=0.73$ for F_{c} (p. 64, NDS Supplement)
$C_{M}=0.833$ for E and $E_{\text {min }}$ (p. 64, NDS Supplement)
$C_{M}=0.8$ for F_{b} (p. 64, NDS Supplement)
$\mathrm{C}_{\mathrm{t}}=1.0$
$\mathrm{E}^{\prime}{ }_{\text {min }}=\left(\mathrm{E}_{\text {min }}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)=(980,000)(0.833)(1.0)=816,340 \mathrm{psi}$
$\mathrm{c}=0.9$ (glulam)
$\mathrm{F}_{\mathrm{cE}}=\left[0.822 \mathrm{E}^{\prime}{ }_{\text {min }}\right] /\left[\left(\mathrm{l}_{\mathrm{e}} / \mathrm{d}\right)^{2}\right]=[(0.822)(816,340 \mathrm{psi})] /\left[(34.9091)^{2}\right]=550.638 \mathrm{psi}$
Here, l_{e} / d is based on $\left(l_{e} / d\right)_{\max }$.
$\mathrm{F}_{\mathrm{c}}{ }^{*}=\mathrm{F}_{\mathrm{c}}\left(\mathrm{C}_{\mathrm{D}}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)=(2300 \mathrm{psi})(1.6)(0.73)(1.0)=2686.4 \mathrm{psi}$
$\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}=550.638 / 2686.4=0.2050$
$\left[1+\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}\right] /(2 \mathrm{c})=[1+0.2050] /[(2)(0.9)]=0.6694$
$\mathrm{C}_{\mathrm{P}}=\left\{\left[1+\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}\right] /(2 \mathrm{c})\right\}-\sqrt{ }\left\{\left[\left(1+\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}\right) /(2 \mathrm{c})\right]^{2}-\left[\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}\right] / \mathrm{c}\right\}$
$=\{0.6694\}-\sqrt{ }\left\{[0.6694]^{2}-[0.2050 / 0.9]\right\}$
$=0.2000$
$\mathrm{F}^{\prime}{ }_{\mathrm{c}}=\mathrm{F}_{\mathrm{c}}{ }^{*}\left(\mathrm{C}_{\mathrm{P}}\right)=(2686.4 \mathrm{psi})(0.2000)=537.220 \mathrm{psi}$
Axial stress ratio $=\mathrm{f}_{\mathrm{c}} / \mathrm{F}^{\prime}{ }_{\mathrm{c}}=(134.016 \mathrm{psi}) /(537.220 \mathrm{psi})=0.2495$
Net Section Check:
Assume connections will be made with (2) rows of $3 / 4$ " diameter bolts.
Assume the hole diameter is $1 / 16$ " larger than the bolt (for stress calculations only).

$$
\begin{aligned}
& \mathrm{A}_{\mathrm{n}}=\left(6.75^{\prime \prime}\right)\left[13.75^{\prime \prime}-(2)\left(0.8125^{\prime \prime}\right)\right]=81.84 \mathrm{in}^{2} \\
& \quad\left(3 / 4 "+1 / 16^{\prime \prime}=0.8125^{\prime \prime}\right) \\
& \mathrm{f}_{\mathrm{c}}=\mathrm{P} / \mathrm{A}_{\mathrm{n}}=12,438 \mathrm{lb} / 81.84 \mathrm{in}^{2}=151.979 \mathrm{psi} \\
& \mathrm{~F}_{\mathrm{c}}{ }_{\mathrm{c}}=\mathrm{F}_{\mathrm{c}}{ }^{*}=\mathrm{F}_{\mathrm{c}}\left(\mathrm{C}_{\mathrm{D}}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)\left(\mathrm{C}_{\mathrm{P}}\right)=(2300 \mathrm{psi})(1.6)(0.73)(1.0)(0.200)=537.28 \mathrm{psi} \\
& \quad 537.28 \mathrm{psi}>151.979 \mathrm{psi} \therefore \text { OK }
\end{aligned}
$$

Bending:

Bending is about the strong axis of the cross section. The adjusted bending design value for a glulam is governed by the smaller of two criteria: volume effect or lateral stability.
$\mathrm{M}=379,188 \mathrm{in}-\mathrm{lb}$
$\mathrm{S}=257.4 \mathrm{in}^{3}$
$\mathrm{f}_{\mathrm{b}}=\mathrm{M} / \mathrm{S}=379,188 \mathrm{in}-\mathrm{lb} / 212.7 \mathrm{in}^{3}=1782.736 \mathrm{psi}$
$\mathrm{F}_{\mathrm{b}}=\mathrm{F}_{\mathrm{b}}\left(\mathrm{C}_{\mathrm{D}}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)\left(\mathrm{C}_{\mathrm{L}}\right)$ or
$\mathrm{F}_{\mathrm{b}}{ }^{\prime}=\mathrm{F}_{\mathrm{b}}\left(\mathrm{C}_{\mathrm{D}}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)\left(\mathrm{C}_{\mathrm{V}}\right)$
For $\mathrm{C}_{\mathrm{L}}: 1_{\mathrm{u}} / \mathrm{d}=\left[\left(13.333^{\prime}\right)(12 \mathrm{in} / \mathrm{ft})\right] / 13.75^{\prime \prime}=11.636>7$

$$
\begin{aligned}
& \therefore 1_{\mathrm{e}}=1.631_{\mathrm{u}}+3 \mathrm{~d}=(1.63)\left[\left(13.333^{\prime}\right)(12 \mathrm{in} / \mathrm{ft})\right]+(3)\left(13.75^{\prime \prime}\right)=302.05^{\prime \prime} \\
& \mathrm{R}_{\mathrm{B}}=\sqrt{ } \mathrm{l}_{\mathrm{e}} \mathrm{~d} / \mathrm{b}^{2}=\sqrt{ }\left[(302.05 ")\left(13.75^{\prime \prime}\right) /\left(6.75^{\prime \prime}\right)^{2}\right]=9.547 \\
& \mathrm{~F}_{\mathrm{bE}}=1.20 \mathrm{E}_{\text {min }}^{\prime} / \mathrm{R}_{\mathrm{B}}^{2}=[(1.20)(816,340 \mathrm{psi})] /(9.547)^{2}=10,746.782 \mathrm{psi}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{b}}=\mathrm{F}_{\mathrm{b}}\left(\mathrm{C}_{\mathrm{D}}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)=(2100 \mathrm{psi})(1.6)(0.8)(1.0)=2688 \mathrm{psi} \\
& \mathrm{~F}_{\mathrm{bE}} / \mathrm{F}_{\mathrm{b}} *_{\mathrm{b}}=(10,176.782) /(2688)=3.9981 \\
& \left(1+\mathrm{F}_{\mathrm{bE}} / \mathrm{F}_{\mathrm{b}}\right) / 1.9=(1+3.9981) / 1.9=2.6306 \\
& \mathrm{C}_{\mathrm{L}}=\left[\left(1+\mathrm{F}_{\mathrm{bE}} / \mathrm{F}_{\mathrm{b}}\right) / 1.9\right]-\sqrt{ }\left\{\left[\left(1+\mathrm{F}_{\mathrm{bE}} / \mathrm{F}_{\mathrm{b}}\right) / 1.9\right]^{2}-\left[\mathrm{F}_{\mathrm{bE}} / \mathrm{F}_{\mathrm{b}} / 0.95\right]\right\} \\
& \left.\quad=2.6306-\sqrt{ }(2.6306)^{2}-(3.9981 / 0.95)\right]=0.9840
\end{aligned}
$$

For Southern Pine glulam:

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{V}}=\left(21^{\prime} / \mathrm{L}\right)^{1 / 20}\left(12^{\prime \prime} / \mathrm{d}\right)^{1 / 20}\left(5.125^{\prime \prime} / \mathrm{b}\right)^{1 / 20} \leq 1.0 \\
& \mathrm{C}_{\mathrm{V}}=\left(21^{\prime} / 40^{\prime}\right)^{1 / 20}\left(12^{\prime \prime} / 13.75^{\prime \prime}\right)^{1 / 20}\left(5.125^{\prime} / 6.75^{\prime \prime}\right)^{1 / 20} \leq 1.0 \\
& \mathrm{C}_{\mathrm{V}}=0.9486 \leq 1.0
\end{aligned}
$$

C_{V} governs of C_{L}
$\mathrm{F}_{\mathrm{b}}=\mathrm{F}^{*}{ }_{\mathrm{b}}\left(\mathrm{C}_{\mathrm{V}}\right)=(2688 \mathrm{psi})(0.9486)=2549.837 \mathrm{psi}$
Bending stress ratio $=\mathrm{f}_{\mathrm{b}} / \mathrm{F}^{\prime}{ }_{\mathrm{b}}=(1782.736 \mathrm{psi}) /(2549.837 \mathrm{psi})=0.6992$
Combined Stresses:

The bending moment is about the strong axis of the cross section, and the amplification for $\mathrm{P}-\Delta$ is measured by the column slenderness ratio about the x axis.
$\left(l_{\mathrm{e}} / \mathrm{d}\right)_{\text {bending moment }}=\left(\mathrm{l}_{\mathrm{e}} / \mathrm{d}\right)_{\mathrm{x}}=34.9091$
$\mathrm{F}_{\mathrm{cEx}}=\left[0.822 \mathrm{E}^{\prime}{ }_{\text {min }}\right] /\left[\left(\mathrm{l}_{\mathrm{e}} / \mathrm{d}\right)_{\mathrm{x}}\right]^{2}=[(0.822)(816,340 \mathrm{psi})] /\left[(34.9091)^{2}\right]=550.637 \mathrm{psi}$
*Here, $\left(l_{\mathrm{e}} / \mathrm{d}\right)$ is based on the axis about which the bending moment occurs.
Amplification factor $=1 /\left[1-\left(\mathrm{f}_{\mathrm{c}} / \mathrm{F}_{\mathrm{cEx}}\right)\right]=1 /[1-(134.016 \mathrm{psi} / 550.637 \mathrm{psi})]=1.3217$
$\left(\mathrm{f}_{\mathrm{c}} / \mathrm{F}^{\prime}{ }_{\mathrm{c}}\right)^{2}+\left\{1 /\left[1-\left(\mathrm{f}_{\mathrm{c}} / \mathrm{F}_{\mathrm{cEx}}\right)\right]\right\}\left(\mathrm{f}_{\mathrm{b}} / \mathrm{F}^{\prime}{ }_{\mathrm{b}}\right)=(0.2495)^{2}+(1.3217)(0.6992)=0.9864<1.0 \therefore$ OK

LOAD COMBINATION: $D+0.75 W+0.75 S$

Try 6 3/4" $\times 13$ 3/4"
$\mathrm{F}_{\mathrm{c}}=2300 \mathrm{psi}$ (Glulam ID \#50, S.P.) (p. 66 NDS Supplement)
$\mathrm{F}_{\mathrm{b}}=2100 \mathrm{psi}$ (Glulam ID \#50, S.P.) (p. 66 NDS Supplement)
$\mathrm{A}=92.81 \mathrm{in}^{2}$
$\mathrm{S}_{\mathrm{x}}=212.7 \mathrm{in}^{3}$
$\mathrm{E}_{\text {min }}=980,000 \mathrm{psi}$
Axial Load: $\mathrm{P}=23,983 \mathrm{lb}$ (Compression)
Maximum Moment: $\mathrm{M}_{\max }=23.700 \mathrm{k}-\mathrm{ft}=23,700 \mathrm{ft}-\mathrm{lb}=284,400 \mathrm{in}-\mathrm{lb}$
$\mathrm{L}=40.0^{\prime}$

Axial Load:

$\mathrm{f}_{\mathrm{c}}=\mathrm{P} / \mathrm{A}=23,983 \mathrm{lb} / 92.81 \mathrm{in}^{2}=258.410 \mathrm{psi}$
$\left(\mathrm{l}_{\mathrm{e}} / \mathrm{d}\right)_{\mathrm{x}}=\left[\left(40^{\prime}\right)(12 \mathrm{in} / \mathrm{ft})\right] / 13.75^{\prime \prime}=34.9091<50 \therefore$ OK
$\left(1_{\mathrm{e}} / \mathrm{d}\right)_{\mathrm{y}}=\left[\left(13.333^{\prime}\right)(12 \mathrm{in} / \mathrm{ft})\right] / 6.75^{\prime \prime}=23.7037<50 \quad \therefore \mathrm{OK}$
$\left(\mathrm{l}_{\mathrm{e}} / \mathrm{d}\right)_{\text {max }}=\left(\mathrm{l}_{\mathrm{e}} / \mathrm{d}\right)_{\mathrm{x}}=34.9091$
The larger slenderness ratio governs the adjusted design value. Therefore, the strong axis of the member is critical, and $\left(l_{e} / d\right)_{x}$ is used to determine $\mathrm{F}^{\prime}{ }_{\mathrm{c}}$.
$\mathrm{C}_{\mathrm{D}}=1.6$ (for wind load; load combination $\mathrm{D}+\mathrm{W}$)
$C_{M}=0.73$ for F_{c} (p. 64, NDS Supplement)
$C_{M}=0.833$ for E and $E_{\text {min }}$ (p. 64, NDS Supplement)
$C_{M}=0.8$ for F_{b} (p. 64, NDS Supplement)
$\mathrm{C}_{\mathrm{t}}=1.0$
$\mathrm{E}^{\prime}{ }_{\text {min }}=\left(\mathrm{E}_{\text {min }}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)=(980,000)(0.833)(1.0)=816,340 \mathrm{psi}$
$\mathrm{c}=0.9$ (glulam)
$\mathrm{F}_{\mathrm{cE}}=\left[0.822 \mathrm{E}^{\prime}{ }_{\text {min }}\right] /\left[\left(1_{\mathrm{e}} / \mathrm{d}\right)^{2}\right]=[(0.822)(816,340 \mathrm{psi})] /\left[(34.9091)^{2}\right]=550.638 \mathrm{psi}$
Here, $l_{\mathrm{e}} / \mathrm{d}$ is based on $\left(l_{e} / d\right)_{\max }$.
$\mathrm{F}_{\mathrm{c}}{ }^{*}=\mathrm{F}_{\mathrm{c}}\left(\mathrm{C}_{\mathrm{D}}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)=(2300 \mathrm{psi})(1.6)(0.73)(1.0)=2686.4 \mathrm{psi}$
$\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}=550.638 / 2686.4=0.2050$
$\left[1+\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}\right] /(2 \mathrm{c})=[1+0.2050] /[(2)(0.9)]=0.6694$
$\mathrm{C}_{\mathrm{P}}=\left\{\left[1+\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}\right] /(2 \mathrm{c})\right\}-\sqrt{ }\left\{\left[\left(1+\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}\right) /(2 \mathrm{c})\right]^{2}-\left[\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}\right] / \mathrm{c}\right\}$
$=\{0.6694\}-\sqrt{ }\left\{[0.6694]^{2}-[0.2050 / 0.9]\right\}$

$$
=0.2000
$$

$\mathrm{F}^{\prime}{ }_{\mathrm{c}}=\mathrm{F}_{\mathrm{c}}{ }^{*}\left(\mathrm{C}_{\mathrm{P}}\right)=(2686.4 \mathrm{psi})(0.2000)=537.220 \mathrm{psi}$

Axial stress ratio $=f_{c} / F^{\prime}{ }_{c}=(258.410 \mathrm{psi}) /(537.220 \mathrm{psi})=0.4810$
Net Section Check:

Assume connections will be made with (2) rows of $3 / 4$ " diameter bolts.

Assume the hole diameter is $1 / 16$ " larger than the bolt (for stress calculations only).

$$
\begin{aligned}
& \mathrm{A}_{\mathrm{n}}=\left(6.75^{\prime \prime}\right)\left[13.75^{\prime \prime}-(2)\left(0.8125^{\prime \prime}\right)\right]=81.84 \mathrm{in}^{2} \\
& \qquad\left(3 / 4 "+1 / 16^{\prime \prime}=0.8125^{\prime \prime}\right) \\
& \mathrm{f}_{\mathrm{c}}=\mathrm{P} / \mathrm{A}_{\mathrm{n}}=23,983 \mathrm{lb} / 81.84 \mathrm{in}^{2}=293.047 \mathrm{psi} \\
& \mathrm{~F}_{\mathrm{c}}^{\prime}=\mathrm{F}_{\mathrm{c}}^{*}=\mathrm{F}_{\mathrm{c}}\left(\mathrm{C}_{\mathrm{D}}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)\left(\mathrm{C}_{\mathrm{P}}\right)=(2300 \mathrm{psi})(1.6)(0.73)(1.0)(0.200)=537.28 \mathrm{psi} \\
& \quad 537.28 \mathrm{psi}>293.047 \mathrm{psi} \therefore \text { OK }
\end{aligned}
$$

Bending:

Bending is about the strong axis of the cross section. The adjusted bending design value for a glulam is governed by the smaller of two criteria: volume effect or lateral stability.
$\mathrm{M}=284,400 \mathrm{in}-\mathrm{lb}$
$\mathrm{S}=257.4 \mathrm{in}^{3}$
$\mathrm{f}_{\mathrm{b}}=\mathrm{M} / \mathrm{S}=284,400 \mathrm{in}-\mathrm{lb} / 212.7 \mathrm{in}^{3}=1337.094 \mathrm{psi}$
$F^{\prime}{ }_{b}=F_{b}\left(C_{D}\right)\left(C_{M}\right)\left(C_{t}\right)\left(C_{L}\right)$ or
$\mathrm{F}^{\prime}{ }_{\mathrm{b}}=\mathrm{F}_{\mathrm{b}}\left(\mathrm{C}_{\mathrm{D}}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)\left(\mathrm{C}_{\mathrm{V}}\right)$
For $C_{L}: 1_{u} / d=\left[\left(13.333^{\prime}\right)(12 \mathrm{in} / \mathrm{ft})\right] / 13.75^{\prime \prime}=11.636>7$

$$
\begin{aligned}
& \therefore 1_{\mathrm{e}}=1.631_{\mathrm{u}}+3 \mathrm{~d}=(1.63)\left[\left(13.333^{\prime}\right)(12 \mathrm{in} / \mathrm{ft})\right]+(3)\left(13.75^{\prime}\right)=302.05^{\prime \prime} \\
& \mathrm{R}_{\mathrm{B}}=\sqrt{ } 1_{\mathrm{e}} \mathrm{~d} / \mathrm{b}^{2}=\sqrt{ }\left[\left(302.05^{\prime}\right)\left(13.75^{\prime \prime}\right) /\left(6.75^{\prime \prime}\right)^{2}\right]=9.547 \\
& \mathrm{~F}_{\mathrm{bE}}=1.20 \mathrm{E}^{\prime}{ }_{\min } / \mathrm{R}_{\mathrm{B}}^{2}=[(1.20)(816,340 \mathrm{psi})] /(9.547)^{2}=10,746.782 \mathrm{psi} \\
& \mathrm{~F}_{\mathrm{b}}{ }^{2}=\mathrm{F}_{\mathrm{b}}\left(\mathrm{C}_{\mathrm{D}}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)=(2100 \mathrm{psi})(1.6)(0.8)(1.0)=2688 \mathrm{psi} \\
& \mathrm{~F}_{\mathrm{bE}} / \mathrm{F}_{\mathrm{b}}=(10,176.782) /(2688)=3.9981 \\
& \left(1+\mathrm{F}_{\mathrm{bE}} / \mathrm{F}_{\mathrm{b}} *_{b}\right) / 1.9=(1+3.9981) / 1.9=2.6306
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{C}_{\mathrm{L}} & =\left[\left(1+\mathrm{F}_{\mathrm{bE}} / \mathrm{F}_{\mathrm{b}} *_{\mathrm{b}} / 1.9\right]-\sqrt{ }\left\{\left[\left(1+\mathrm{F}_{\mathrm{bE}} / \mathrm{F}_{\mathrm{b}} *^{2} / 1.9\right]^{2}-\left[\mathrm{F}_{\mathrm{bE}} / \mathrm{F}_{\mathrm{b}} / 0.95\right]\right\}\right.\right. \\
& \left.=2.6306-\sqrt{ }(2.6306)^{2}-(3.9981 / 0.95)\right]=0.9840
\end{aligned}
$$

For Southern Pine glulam:

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{V}}=\left(21^{\prime} / \mathrm{L}\right)^{1 / 20}\left(12^{\prime \prime} / \mathrm{d}\right)^{1 / 20}\left(5.125^{\prime} / \mathrm{b}\right)^{1 / 20} \leq 1.0 \\
& \mathrm{C}_{\mathrm{V}}=\left(21^{\prime} / 40^{\prime}\right)^{1 / 20}\left(12^{\prime \prime} / 13.75^{\prime}\right)^{1 / 20}\left(5.125^{\prime} / 6.75^{\prime \prime}\right)^{1 / 20} \leq 1.0 \\
& \mathrm{C}_{\mathrm{V}}=0.9486 \leq 1.0
\end{aligned}
$$

C_{V} governs of C_{L}
$\mathrm{F}_{\mathrm{b}}=\mathrm{F}_{\mathrm{b}}{ }_{(}\left(\mathrm{C}_{\mathrm{V}}\right)=(2688 \mathrm{psi})(0.9486)=2549.837 \mathrm{psi}$
Bending stress ratio $=\mathrm{f}_{\mathrm{b}} / \mathrm{F}_{\mathrm{b}}=(1337.094 \mathrm{psi}) /(2549.837 \mathrm{psi})=0.5244$

Combined Stresses:

The bending moment is about the strong axis of the cross section, and the amplification for $\mathrm{P}-\Delta$ is measured by the column slenderness ratio about the x axis.
$\left(1_{\mathrm{e}} / \mathrm{d}\right)_{\text {bending moment }}=\left(1_{\mathrm{e}} / \mathrm{d}\right)_{\mathrm{x}}=34.9091$
$\mathrm{F}_{\mathrm{cEx}}=\left[0.822 \mathrm{E}^{\prime}{ }_{\text {min }}\right] /\left[\left(1_{\mathrm{e}} / \mathrm{d}\right)_{\mathrm{x}}\right]^{2}=[(0.822)(816,340 \mathrm{psi})] /\left[(34.9091)^{2}\right]=550.637 \mathrm{psi}$
*Here, $\left(l_{\mathrm{l}} / \mathrm{d}\right)$ is based on the axis about which the bending moment occurs.
Amplification factor $=1 /\left[1-\left(\mathrm{f}_{\mathrm{c}} / \mathrm{F}_{\mathrm{cEx}}\right)\right]=1 /[1-(258.410 \mathrm{psi} / 550.637 \mathrm{psi})]=1.8843$
$\left(\mathrm{f}_{\mathrm{c}} / \mathrm{F}_{\mathrm{c}}\right)^{2}+\left\{1 /\left[1-\left(\mathrm{f}_{\mathrm{c}} / \mathrm{F}_{\mathrm{cEx}}\right)\right]\right\}\left(\mathrm{f}_{\mathrm{b}} / \mathrm{F}^{\prime}{ }_{\mathrm{b}}\right)=(0.4810)^{2}+(1.8843)(0.5244)=1.219>1.0 \therefore$ N.G.
Try 6 3/4" $\times 15$ 1/8"
$\mathrm{F}_{\mathrm{c}}=2300 \mathrm{psi}$ (Glulam ID \#50, S.P.) (p. 66 NDS Supplement)
$\mathrm{F}_{\mathrm{b}}=2100 \mathrm{psi}$ (Glulam ID \#50, S.P.) (p. 66 NDS Supplement)
$\mathrm{A}=102.1 \mathrm{in}^{2}$
$\mathrm{S}=257.4 \mathrm{in}^{3}$
$\mathrm{E}_{\text {min }}=980,000 \mathrm{psi}$
Axial Load: $\mathrm{P}=23,983 \mathrm{lb}$ (Compression)
Maximum Moment: $\mathrm{M}_{\max }=284,400 \mathrm{in}-\mathrm{lb}$
$\mathrm{L}=40.0^{\prime}$

Axial Load:
$\mathrm{f}_{\mathrm{c}}=\mathrm{P} / \mathrm{A}=23,983 \mathrm{lb} / 102.1 \mathrm{in}^{2}=234.897 \mathrm{psi}$
$\left(l_{\mathrm{e}} / \mathrm{d}\right)_{x}=\left[\left(40^{\prime}\right)(12 \mathrm{in} / \mathrm{ft})\right] / 15.125^{\prime}=31.7355<50 \therefore$ OK
$\left(l_{\mathrm{e}} / \mathrm{d}\right)_{\mathrm{y}}=\left[\left(13.333^{\prime}\right)(12 \mathrm{in} / \mathrm{ft})\right] / 6.75^{\prime \prime}=23.7037<50 \quad \therefore$ OK
$\left(\mathrm{l}_{\mathrm{e}} / \mathrm{d}\right)_{\max }=\left(\mathrm{l}_{\mathrm{e}} / \mathrm{d}\right)_{\mathrm{x}}=31.7355$
The larger slenderness ratio governs the adjusted design value. Therefore, the strong axis of the member is critical, and $\left(l_{e} / d\right)_{x}$ is used to determine F '.
$\mathrm{C}_{\mathrm{D}}=1.6$ (for wind load; load combination $\mathrm{D}+\mathrm{W}$)
$C_{M}=0.73$ for F_{c} (p. 64, NDS Supplement)
$C_{M}=0.833$ for E and $E_{\text {min }}$ (p. 64, NDS Supplement)
$C_{M}=0.8$ for $F_{b}($ p. 64, NDS Supplement $)$
$\mathrm{C}_{\mathrm{t}}=1.0$
$\mathrm{E}^{\prime}{ }_{\text {min }}=\left(\mathrm{E}_{\text {min }}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)=(980,000)(0.833)(1.0)=816,340 \mathrm{psi}$
$\mathrm{c}=0.9$ (glulam)
$\mathrm{F}_{\mathrm{cE}}=\left[0.822 \mathrm{E}_{\text {min }}\right] /\left[\left(\mathrm{l}_{\mathrm{e}} / \mathrm{d}\right)^{2}\right]=[(0.822)(816,340 \mathrm{psi})] /\left[(31.7355)^{2}\right]=666.271 \mathrm{psi}$
Here, l_{e} / d is based on $\left(l_{e} / d\right)_{\max }$.
$\mathrm{F}_{\mathrm{c}}{ }^{*}=\mathrm{F}_{\mathrm{c}}\left(\mathrm{C}_{\mathrm{D}}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)=(2300 \mathrm{psi})(1.6)(0.73)(1.0)=2686.4 \mathrm{psi}$
$\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}=666.271 / 2686.4=0.2480$
$\left[1+\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}\right] /(2 \mathrm{c})=[1+0.2480] /[(2)(0.9)]=0.6933$
$\mathrm{C}_{\mathrm{P}}=\left\{\left[1+\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}\right] /(2 \mathrm{c})\right\}-\sqrt{ }\left\{\left[\left(1+\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}\right) /(2 \mathrm{c})\right]^{2}-\left[\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}\right] / \mathrm{c}\right\}$
$=\{0.6933\}-\sqrt{ }\left\{[0.6933]^{2}-[0.2480 / 0.9]\right\}$
$=0.2403$
$\mathrm{F}^{\prime}{ }_{\mathrm{c}}=\mathrm{F}_{\mathrm{c}}{ }^{*}\left(\mathrm{C}_{\mathrm{P}}\right)=(2686.4 \mathrm{psi})(0.2403)=645.663 \mathrm{psi}$
Axial stress ratio $=f_{c} / F^{\prime}{ }_{\mathrm{c}}=(234.897 \mathrm{psi}) /(645.663 \mathrm{psi})=0.3638$
Net Section Check:
Assume connections will be made with (2) rows of $3 / 4$ " diameter bolts.

Assume the hole diameter is $1 / 16$ " larger than the bolt (for stress calculations only).

$$
\begin{aligned}
& \mathrm{A}_{\mathrm{n}}=\left(6.75^{\prime \prime}\right)\left[15.125^{\prime \prime}-(2)\left(0.8125^{\prime \prime}\right)\right]=91.125 \mathrm{in}^{2} \\
& \qquad\left(3 / 4 "+1 / 16^{\prime \prime}=0.8125^{\prime \prime}\right) \\
& \mathrm{f}_{\mathrm{c}}=\mathrm{P} / \mathrm{A}_{\mathrm{n}}=23,983 \mathrm{lb} / 91.125 \mathrm{in}^{2}=263.188 \mathrm{psi} \\
& \mathrm{~F}_{\mathrm{c}}^{\prime}=\mathrm{F}_{\mathrm{c}}{ }^{*}=\mathrm{F}_{\mathrm{c}}\left(\mathrm{C}_{\mathrm{D}}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)\left(\mathrm{C}_{\mathrm{P}}\right)=(2300 \mathrm{psi})(1.6)(0.73)(1.0)(0.2403)=645.542 \mathrm{psi} \\
& 645.542 \mathrm{psi}>263.188 \therefore \mathrm{OK}
\end{aligned}
$$

Bending:

Bending is about the strong axis of the cross section. The adjusted bending design value for a glulam is governed by the smaller of two criteria: volume effect or lateral stability.
$\mathrm{M}=284,400 \mathrm{in}-\mathrm{lb}$
$\mathrm{S}=257.4 \mathrm{in}^{3}$
$\mathrm{f}_{\mathrm{b}}=\mathrm{M} / \mathrm{S}=284,400 \mathrm{in}-\mathrm{lb} / 257.4 \mathrm{in}^{3}=1104.895 \mathrm{psi}$
$\mathrm{F}^{\prime}{ }_{\mathrm{b}}=\mathrm{F}_{\mathrm{b}}\left(\mathrm{C}_{\mathrm{D}}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)\left(\mathrm{C}_{\mathrm{L}}\right)$ or
$\mathrm{F}^{\prime}{ }_{\mathrm{b}}=\mathrm{F}_{\mathrm{b}}\left(\mathrm{C}_{\mathrm{D}}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)\left(\mathrm{C}_{\mathrm{V}}\right)$
For $\mathrm{C}_{\mathrm{L}}: 1_{\mathrm{u}} / \mathrm{d}=\left[\left(13.333^{\prime}\right)(12 \mathrm{in} / \mathrm{ft})\right] / 15.125^{\prime \prime}=10.579>7$

$$
\begin{aligned}
& \therefore l_{\mathrm{e}}=1.631_{\mathrm{u}}+3 \mathrm{~d}=(1.63)\left[\left(13.333^{\prime}\right)(12 \mathrm{in} / \mathrm{ft})\right]+(3)\left(15.125^{\prime \prime}\right)=306.17^{\prime \prime} \\
& \mathrm{R}_{\mathrm{B}}=\sqrt{ } 1_{\mathrm{e}} \mathrm{~d} / \mathrm{b}^{2}=\sqrt{ }\left[\left(306.17^{\prime \prime}\right)\left(15.125^{\prime}\right) /\left(6.75^{\prime \prime}\right)^{2}\right]=10.082 \\
& \mathrm{~F}_{\mathrm{bE}}=1.20 \mathrm{E}^{\prime}{ }_{\min } / \mathrm{R}_{\mathrm{B}}{ }^{2}=[(1.20)(816,340 \mathrm{psi})] /(10.082)^{2}=9638.174 \mathrm{psi} \\
& \mathrm{~F}_{\mathrm{b}}=\mathrm{F}_{\mathrm{b}}\left(\mathrm{C}_{\mathrm{D}}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)=(2100 \mathrm{psi})(1.6)(0.8)(1.0)=2688 \mathrm{psi} \\
& \mathrm{~F}_{\mathrm{bE}} / \mathrm{F}^{*}{ }_{\mathrm{b}}=(9638.174) /(2688)=3.5856 \\
& \left(1+\mathrm{F}_{\mathrm{bE}} / \mathrm{F}^{*}{ }_{\mathrm{b}}\right) / 1.9=(1+3.5856) / 1.9=2.4135 \\
& \mathrm{C}_{\mathrm{L}}=\left[\left(1+\mathrm{F}_{\mathrm{bE}} / \mathrm{F}^{*}{ }_{\mathrm{b}}\right) / 1.9\right]-\sqrt{ }\left\{\left[\left(1+\mathrm{F}_{\mathrm{bE}} / \mathrm{F}^{*} \mathrm{~b}\right) / 1.9\right]^{2}-\left[\mathrm{F}_{\mathrm{bE}} / \mathrm{F}_{\mathrm{b}} / 0.95\right]\right\} \\
& \left.\quad=2.4135-\sqrt{ }(2.4135)^{2}-(3.5856 / 0.95)\right]=0.9815
\end{aligned}
$$

For Southern Pine glulam:

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{V}}=\left(21^{\prime} / \mathrm{L}\right)^{1 / 20}\left(12^{\prime \prime} / \mathrm{d}\right)^{1 / 20}\left(5.125^{\prime \prime} / \mathrm{b}\right)^{1 / 20} \leq 1.0 \\
& \mathrm{C}_{\mathrm{V}}=\left(21^{\prime} / 40^{\prime}\right)^{1 / 20}\left(12^{\prime} / 15.125^{\prime}\right)^{1 / 20}\left(5.125^{\prime} / 6.75^{\prime}\right)^{1 / 20} \leq 1.0
\end{aligned}
$$

$$
\mathrm{C}_{\mathrm{V}}=0.9441 \leq 1.0
$$

C_{V} governs of C_{L}
$\mathrm{F}_{\mathrm{b}}{ }^{\prime}=\mathrm{F}_{\mathrm{b}}\left(\mathrm{C}_{\mathrm{V}}\right)=(2688 \mathrm{psi})(0.9441)=2537.741 \mathrm{psi}$

Bending stress ratio $=\mathrm{f}_{\mathrm{b}} / \mathrm{F}^{\prime}{ }_{\mathrm{b}}=(1104.895 \mathrm{psi}) /(2537.741 \mathrm{psi})=0.4354$

Combined Stresses:

The bending moment is about the strong axis of the cross section, and the amplification for $\mathrm{P}-\Delta$ is measured by the column slenderness ratio about the x axis.
$\left(l_{\mathrm{e}} / \mathrm{d}\right)_{\text {bending moment }}=\left(l_{\mathrm{e}} / \mathrm{d}\right)_{\mathrm{x}}=31.7355$
$\mathrm{F}_{\mathrm{cEx}}=\left[0.822 \mathrm{E}^{\prime}{ }_{\text {min }}\right] /\left[\left(\mathrm{l}_{\mathrm{e}} / \mathrm{d}\right)_{\mathrm{x}}\right]^{2}=[(0.822)(816,340 \mathrm{psi})] /\left[(31.7355)^{2}\right]=666.271 \mathrm{psi}$
*Here, $\left(l_{\mathrm{e}} / \mathrm{d}\right)$ is based on the axis about which the bending moment occurs.
Amplification factor $=1 /\left[1-\left(\mathrm{f}_{\mathrm{c}} / \mathrm{F}_{\mathrm{cEx}}\right)\right]=1 /[1-(234.897 \mathrm{psi} / 666.271 \mathrm{psi})]=1.5445$
$\left(\mathrm{f}_{\mathrm{c}} / \mathrm{F}^{\prime}{ }_{\mathrm{c}}\right)^{2}+\left\{1 /\left[1-\left(\mathrm{f}_{\mathrm{c}} / \mathrm{F}_{\mathrm{cEx}}\right)\right]\right\}\left(\mathrm{f}_{\mathrm{b}} / \mathrm{F}^{\prime}{ }_{\mathrm{b}}\right)=(0.3638)^{2}+(1.5445)(0.4354)=0.805<1.0 \therefore$ OK
FINAL SECTION SIZE: 6 3/4" x 15 1/8" Southern Pine Glulam ID \#50

SUMMARY	
Top Chord	$63 / 4^{\prime \prime} \times 123 / 8^{\prime \prime}$
Bottom Chord	$63 / 4^{\prime \prime} \times 81 / 4^{\prime \prime}$
Web Members	$63 / 4^{\prime \prime} \times 67 / 8^{\prime \prime}$
West Column	$63 / 4 " \times 151 / 8 "$
All members are Southern Pine, Glulam	
I.D. \#50	

Deflection Check in SAP2000:

Member 1 (Column): $63 / 4 " x 151 / 8^{\prime \prime}($ Southern Pine, Glulam ID \# 50)

$$
\begin{aligned}
& A=102.1 \mathrm{in}^{2} \\
& I_{x}=\mathrm{bh}^{3} / 12=\left(6.75^{\prime \prime}\right)\left(15.125^{\prime \prime}\right)^{3} / 12=1946 \mathrm{in}^{4} \\
& I_{y}=b h^{3} / 12=\left(15.125^{\prime \prime}\right)\left(6.75^{\prime \prime}\right)^{3} / 12=387.6 \mathrm{in}^{4} \\
& E=1,900,000 \mathrm{psi}
\end{aligned}
$$

Member 13 (Top Chord): 6 3/4"x 9 5/8" (Southern Pine, Glulam ID \#50)

$$
\begin{aligned}
& \mathrm{A}=64.97 \mathrm{in}^{2} \\
& \mathrm{I}_{\mathrm{x}}=\mathrm{bh}^{3} / 12=\left(6.75^{\prime \prime}\right)\left(9.625^{\prime}\right)^{3} / 12=501.6 \mathrm{in}^{4} \\
& \mathrm{I}_{\mathrm{y}}=\mathrm{bh}^{3} / 12=\left(9.625^{\prime \prime}\right)\left(6.75^{\prime}\right)^{3} / 12=246.7 \mathrm{in}^{4} \\
& \mathrm{E}=1,900,000 \mathrm{psi}
\end{aligned}
$$

Member 6 (Bottom Chord): $6^{3 / 4} 4^{\prime \times} 67 / 8^{\prime \prime}$ (Southern Pine, Glulam ID \#50)

$$
\begin{aligned}
& \mathrm{A}=46.41 \mathrm{in}^{2} \\
& \mathrm{I}_{\mathrm{x}}=\mathrm{bh}^{3} / 12=\left(6.75^{\prime \prime}\right)\left(6.875^{\prime}\right)^{3} / 12=182.8 \mathrm{in}^{4} \\
& \mathrm{I}_{\mathrm{y}}=\mathrm{bh}^{3} / 12=\left(6.875^{\prime \prime}\right)\left(6.75^{\prime}\right)^{3} / 12=176.2 \mathrm{in}^{4} \\
& \mathrm{E}=1,900,000 \mathrm{psi}
\end{aligned}
$$

Total Load: D + S
Deflection at mid-span of truss $($ top chord $)=1.582$ " $($ from SAP2000 model $)$
$1.582^{\prime \prime}<\mathrm{L} / 240=\left[\left(130^{\prime}\right)(12 \mathrm{in} / \mathrm{ft})\right] / 240=6.5^{\prime \prime} \therefore$ OK
Deflection at mid span of truss $($ bottom chord $)=1.584 "($ from SAP2000 model $)$
$1.584^{\prime \prime}<\mathrm{L} / 240=\left[\left(130^{\prime}\right)(12 \mathrm{in} / \mathrm{ft})\right] / 240=6.5^{\prime \prime} \therefore$ OK
Deflections include distributed dead load of $(10 \mathrm{PSF})\left(8^{\prime}\right)=80 \mathrm{lb} / \mathrm{ft}=0.080 \mathrm{k} / \mathrm{ft}$ to the bottom chord.

Live Load: L_{r}
Deflection at mid-span of truss $($ top chord $)=0.513$ "
$0.513^{\prime \prime}<\mathrm{L} / 360=\left[\left(130{ }^{\prime}\right)(12 \mathrm{in} / \mathrm{ft})\right] / 360=4.333 " \therefore$ OK
Deflection at mid-span of truss (bottom chord) $=0.512 "$
$0.512^{\prime \prime} \ll \mathrm{L} / 360=\left[\left(130^{\prime}\right)(12 \mathrm{in} / \mathrm{ft})\right] / 360=4.333 " \therefore$ OK
All Top Chord Members:
Load along roof slope:
$\mathrm{w}_{\mathrm{Lr}}=(20 \mathrm{PSF})\left(8^{\prime}\right)=160 \mathrm{lb} / \mathrm{ft}=0.160 \mathrm{k} / \mathrm{ft}($ due to roof live load $)$

Cost Comparison Using RS Means

From RS Means Building Construction Cost Data (2009)
(costs include material, labor, and equipment)
Wood Roof System:

Connector Plates, steel, with bolts, straight $=(\$ 34 /$ plate $)(22)(19$ trusses $)=\$ 14,212$

Laminated Roof Deck:
Cedar, $3 "$ thick $=(\$ 5.61 / \mathrm{SF})(20,280 \mathrm{SF})=\$ 113,770.80$
(values for Southern Pine were not given, so Cedar was conservatively assumed)
Sheathing, Plywood on Roofs:
$3 / 8^{\prime \prime}$ thick $=(\$ 0.87 / \mathrm{SF})(20,280 \mathrm{SF})=\$ 17,643.60$
Glued-Laminated Beams:
Bowstring trusses, 20' o.c., 120' clear span

$$
=(\$ 8.09 / \mathrm{SF})(20280 \mathrm{SF})=\$ 164,065.20
$$

Although 8^{\prime} o.c. is not listed in the tables, it is listed for other similar framing systems. On average, the total cost of various trusses @ 8’ o.c. is only about $\$ 1 / \mathrm{SF}$ more than the same trusses @ 16^{\prime} o.c. For this analysis, look at radial arches:
120^{\prime} clear span, frames 8^{\prime} o.c. $=\$ 13.86 / \mathrm{SF}$
120^{\prime} clear span, frames 16^{\prime} o.c. $=\$ 12.34 / \mathrm{SF}$
Increased by $\$ 13.86 / \$ 12.34=1.1232$
So, for the bowstring trusses at 8^{\prime} o.c., 120' clear span, assume:
$(1.1232)(\$ 8.09 / \mathrm{SF})=\$ 9.09 / \mathrm{SF}$
$(\$ 9.09 / \mathrm{SF})(20280 \mathrm{SF})=\$ 184,274.20$
For pressure treating, add $35 "$ to material cost:
Material cost: $(1.1232)(\$ 7.24 / \mathrm{SF})=\$ 8.14 / \mathrm{SF}$
$(1.35)(\$ 8.14 / \mathrm{SF})=\$ 10.99 / \mathrm{SF}$
Total cost $=\$ 10.99 / \mathrm{SF}+(1.1232)(\$ 0.53 / \mathrm{SF})+(1.1232)(\$ 0.31 / \mathrm{SF})=$ $=\$ 11.93 / \mathrm{SF}$
$(\$ 11.93 / \mathrm{SF})(20280 \mathrm{SF})=\$ 242,011.14$

High-Strength Bolts:
$3 / 4 "$ diameter x $8 "$ long $=(\$ 9.26 / b o l t)(846$ bolts $/$ truss $)(19$ trusses $)=\$ 148,845.24$

Original Steel Roof System:

Paints and Protective Coatings:
Galvanizing steel in shop:
Steel trusses: 1 ton to 20 tons $=(\$ 795 /$ ton $)(19.1865$ tons $)=\$ 15,253.27$
Long-span metal roof deck (galvanized and painted):
Galvanized steel, 18 ga, corrugated ($21 / 2 "$ and $3 "$) $=2.4 \mathrm{psf}$
For $71 / 2 "$, assume $=(2)(2.4 \mathrm{psf})=4.8 \mathrm{psf}$
$(4.8 \mathrm{psf})(20280 \mathrm{SF})=97.344 \mathrm{k}=48.672$ tons
Over 20 tons: $(\$ 735 /$ ton $)(48.672$ tons $)=\$ 35,773.92$

Welded Rigid Frame:

Minimum: $(\$ 3,475 /$ ton $)[(38.373 \mathrm{k}+45.595 \mathrm{k}) / 2]=\$ 145,894.40$
Maximum: $(\$ 5,055 /$ ton $)[(38.373 \mathrm{k}+45.595 \mathrm{k}) / 2]=\$ 212,229.12$

Or use "roof trusses":

Minimum: $(\$ 4,615 /$ ton $)[(38.373 \mathrm{k}+45.595 \mathrm{k}) / 2]=\$ 193,756.16$
Maximum: $(\$ 5,751 /$ ton $)[(38.373 \mathrm{k}+45.595 \mathrm{k}) / 2]=\$ 241,449.98$

For projects 25 to 49 tons, add 30% to material costs:

Welded Rigid Frame:
Minimum: $(1.30)(\$ 3,125 /$ ton $)=\$ 4,062.5 /$ ton
Total $=\$ 4062.5 /$ ton $+\$ 223 /$ ton $+\$ 127 /$ ton $=\$ 4,412.5 /$ ton
$(\$ 4,412.5 /$ ton $)(41.984$ tons $)=\$ 185,254.40$
Maximum: $(1.30)(\$ 4050 /$ ton $)=\$ 5,265 /$ ton
Total $=\$ 5,265 /$ ton $+\$ 640 /$ ton $+\$ 365 /$ ton $=\$ 6,270 /$ ton $(\$ 6,270 /$ ton $)(41.984$ tons $)=\$ 263,239.68$

Or use "roof trusses":

Minimum: $(1.30)(\$ 4,200 /$ ton $)=\$ 5,460 /$ ton Total $=\$ 5460 /$ ton $+\$ 271 /$ ton $+\$ 144 /$ ton $=\$ 5,875 /$ ton $(\$ 5875 /$ ton $)(41.984$ tons $)=\$ 246,656.00$
Maximum: $(1.30)(\$ 5100 /$ ton $)=\$ 6,630 /$ ton Total $=\$ 6,630 /$ ton $+\$ 425 /$ ton $+\$ 226 /$ ton $=\$ 7,281 /$ ton $(\$ 7281 /$ ton $)(41.984$ tons $)=\$ 305,685.50$

Average of all four $=\$ 1,000,835.58 / 4=\$ 250,208.90$

Plus, the actual cost would probably be toward the maximum end anyway due to the complex truss configuration.

Steel Deck:
7 ½" deep, long span, 18 gauge: $\$ 16.30 /$ SF
For acoustical perforated, with fiberglass, add: $\$ 1.91 / \mathrm{SF}$
Total $=\$ 16.30 / \mathrm{SF}+\$ 1.91 / \mathrm{SF}=\$ 18.21 / \mathrm{SF}$
$(\$ 18.21 / \mathrm{SF})(20,280 \mathrm{SF})=\$ 369,298.80$

Concrete Moment Frames:

Forms in place, beams and girders:
$24 "$ wide, 4 use $=\$ 6.64 /$ SFCA
Column line 2: SFCA = (8 beams $)\left[\left(2 * 24^{\prime \prime}\right)+\left(2 * 30^{\prime \prime}\right) / 12\right]\left(32^{\prime}\right)=2304$ SFCA
Column line 1.8: $\mathrm{SFCA}=(4$ beams $)\left[\left(2^{*} 24^{\prime \prime}\right)+\left(2^{*} 26^{\prime \prime}\right) / 12\right]\left(32^{\prime}\right)=1066.67 \mathrm{SFCA}$
East/West frame: SFCA $=(5$ beams $)\left[\left(2^{*} 24^{\prime \prime}\right)+\left(2^{*} 26^{\prime}\right) / 12\right]\left(32^{\prime}\right)=1333.33$ SFCA
Total $=4,704.00 \mathrm{SFCA}$
$(\$ 6.64 / \mathrm{SFCA})(4704.00 \mathrm{SFCA})=\$ 22,381.23$

Forms in place, columns:

24 "x24" columns, 4 use $=\$ 5.91 /$ SFCA
Column line 2: $\mathrm{SFCA}=(5$ columns $)\left[\left(4^{*} 24^{\prime \prime}\right) / 12\right]\left(40^{\prime}\right)=1,600 \mathrm{SFCA}$
Column line 1.8: $\mathrm{SFCA}=(5$ columns $)\left[\left(4^{*} 24^{`}\right) / 12\right]\left(10.5^{\prime}\right)=420 \mathrm{SFCA}$
Total $=2020$ SFCA
$(\$ 5.91 / \mathrm{SFCA})(2,020 \mathrm{SFCA})=\$ 11,938.20$

Concrete in place:

Columns, 24 "x24", average reinforcing $=\$ 1,068 / \mathrm{CY}$
Column line 2: $(5$ columns $)\left[\left(2^{\prime}\right)\left(2^{\prime}\right)\left(40^{\prime}\right) / 27\right]=29.630 \mathrm{CY}$
Column line 1.8: $(5$ columns $)\left[\left(2^{\prime}\right)\left(2^{\prime}\right)\left(10.5^{\prime}\right) / 27\right]=7.778 \mathrm{CY}$
Total $=29.630 \mathrm{CY}+7.778 \mathrm{CY}=37.407 \mathrm{CY}$
$(\$ 1,068 / \mathrm{CY})(37.407 \mathrm{CY})=\$ 39,951.08$

Beams, 25^{\prime} span $=\$ 901 / \mathrm{CY}$
Column line 2: $(8$ beams $)\left[\left(2^{\prime}\right)\left(2.5^{\prime}\right)\left(32^{\prime}\right) / 27\right]=47.407 \mathrm{CY}$
Column line 1.8: (4 beams)[(2')(2.1667')(32')/27] $=20.543 \mathrm{CY}$
East/West frame: (5 beams) $\left[\left(2^{\prime}\right)\left(2.1667^{\prime}\right)\left(23^{\prime}\right) / 27\right]=18.457 \mathrm{CY}$
Total $=47.407 \mathrm{CY}+20.543 \mathrm{CY}+18.457=86.407 \mathrm{CY}$
$(\$ 901 / \mathrm{CY})(86.407 \mathrm{CY})=\$ 77,852.52$

Reinforcing steel:
Beams and Girders: $\# 3$ to $\# 7=\$ 2440 /$ ton
Columns: $\# 8$ to $\# 18=\$ 2170 /$ ton

Beams: Use $\rho_{\mathrm{g}}=0.015$
Column line 2: (8 beams $)\left[\left(\left(24{ }^{\prime *} * 30\right.\right.\right.$ " $\left.\left.) / 144\right)\left(32^{\prime}\right)\right]=1,280 \mathrm{ft}^{3}$ $(0.015)\left(1280 \mathrm{ft}^{3}\right)=19.2 \mathrm{ft}^{3}$
$\left(490 \mathrm{lb} / \mathrm{ft}^{3}\right)\left(19.2 \mathrm{ft}^{3}\right)=9,408 \mathrm{lb}=4.704$ tons $(\$ 2,440 /$ ton $)(4.704$ tons $)=\$ 11,477.76$
Column line 1.8: (4 beams $)\left[\left(\left(24^{\prime \prime} * 26^{\prime \prime}\right) / 144\right)\left(32^{\prime}\right)\right]=554.667 \mathrm{ft}^{3}$ $(0.015)\left(554.667 \mathrm{ft}^{3}\right)=8.32 \mathrm{ft}^{3}$ $\left(490 \mathrm{lb} / \mathrm{ft}^{3}\right)\left(8.32 \mathrm{ft}^{3}\right)=4,076.80 \mathrm{lb}=2.038$ tons $(\$ 2,440 /$ ton $)(2.038$ tons $)=\$ 4,973.70$
East/West frame: (5 beams $)\left[\left(\left(24{ }^{\prime *} * 26^{\prime \prime}\right) / 144\right)\left(23^{\prime}\right)\right]=498.333 \mathrm{ft}^{3}$ $(0.015)\left(498.333 \mathrm{ft}^{3}\right)=7.475 \mathrm{ft}^{3}$ $\left(490 \mathrm{lb} / \mathrm{ft}^{3}\right)\left(7.475 \mathrm{ft}^{3}\right)=3,662.75 \mathrm{lb}=1.831$ tons $(\$ 2,440 /$ ton $)(1.831$ tons $)=\$ 4,468.56$

Columns: Use $\rho_{\mathrm{g}}=0.015$
Column line 2: $(5$ columns $)\left[\left(\left(24^{\prime \prime *} 24^{\prime \prime}\right) / 144\right)\left(40^{\prime}\right)\right]=800 \mathrm{ft}^{3}$ $(0.015)\left(800 \mathrm{ft}^{3}\right)=12.0 \mathrm{ft}^{3}$ $\left(490 \mathrm{lb} / \mathrm{ft}^{3}\right)\left(12.0 \mathrm{ft}^{3}\right)=5,880 \mathrm{lb}=2.94$ tons $(\$ 2440 /$ ton $)(2.94$ tons $)=\$ 7173.60$
Column line 1.8: (5 columns $)\left[\left(\left(24^{\prime *} 24^{\prime \prime}\right) / 144\right)\left(10.5^{\prime}\right)\right]=210 \mathrm{ft}^{3}$

$$
\begin{aligned}
& (0.015)\left(210 \mathrm{ft}^{3}\right)=3.15 \mathrm{ft}^{3} \\
& \left(490 \mathrm{lb} / \mathrm{ft}^{3}\right)\left(3.15 \mathrm{ft}^{3}\right)=1,543.50 \mathrm{lb}=0.772 \text { tons } \\
& (\$ 2440 / \text { ton })(0.772 \text { tons })=\$ 1,883.07
\end{aligned}
$$

Steel Moment Frame (Original Design):

Structural tubing, heavy sections $=\$ 1.63 / \mathrm{lb}$
Column line 2:
Columns: (5) HSS18x18x5/8
(5) $[(127 \mathrm{lb} / \mathrm{ft})(37 ’)]=23,495 \mathrm{lb}$
$(\$ 1.63 / \mathrm{lb})(23,495 \mathrm{lb})=\$ 38,296.85$
Beams: (8) HSS12x12x3/8
(8) $\left[(58.03 \mathrm{lb} / \mathrm{ft})\left(30^{\prime}\right)\right]=13,927.20 \mathrm{lb}$
$(\$ 1.63 / \mathrm{lb})(13,927.20 \mathrm{lb})=\$ 22,701.34$
Column line 1.8:
Columns: (5) HSS14x 14x1/2
$(5)\left[(89.55 \mathrm{lb} / \mathrm{ft})\left(10.5^{\prime}\right)\right]=4,701.375 \mathrm{lb}$
$(\$ 1.63 / \mathrm{lb})(4,701.375 \mathrm{lb})=\$ 7,663.24$
Beams: (4) W27x84
$(4)\left(30^{\prime}\right)=120^{\prime}$
$(\$ 143.54 / \mathrm{ft})\left(120^{\prime}\right)=\$ 17,224.80$
East/West frame:
Beams: (5) W27x84
$(5)(23 ')=115^{\prime}$
$(\$ 143.54 / \mathrm{ft})\left(115^{\prime}\right)=\$ 16,507.10$

Decking

From "AITC 112*-81: Standard for Tongue-and-Groove Heavy Timber Roof Decking"

1) Sizes (tongue-and-groove decking)

Two-inch decking
Three-inch decking
Four-inch decking
(nominal dimensions are given)
2) Patterns

Controlled Random Layup
Cantilever Spans with Controlled Random Layup
Cantilevered Pieces Intermixed
Combination Simple and Two-Span Continuous
Two-Span Continuous
3) V-groove for architectural aspect since decking will be exposed from below.
4) Southern Pine

Select Quality
Bending Stress $=1650 \mathrm{psi}$
Modulus of Elasticity = 1,600,000 psi
Commercial Quality
Bending Stress $=1650 \mathrm{psi}$
Modulus of Elasticity = 1,600,000 psi
*"When decking is used where the moisture content will exceed 19% for an extended period of time, bending stress values should be multiplied by a factor of 0.86 and modules of elasticity by a factor of 0.97 ."
*These values include repetitive member factor
Adjusted Values for Southern Pine (moisture content exceeding 19\% since natatorium):
Select Quality
Bending Stress $=(0.86)(1650 \mathrm{psi})=\mathbf{1 4 1 9} \mathbf{~ p s i}$
Modulus of Elasticity $=(0.97)(1,600,000 \mathrm{psi})=\mathbf{1 , 5 5 2 , 0 0 0} \mathbf{~ p s i}$
5) Table 4: "Two Inch Nominal Thickness, Allowable Roof Load Limited by Bending"

Simple Span, 8 ft , Bending Stress $=1400 \mathrm{psi}$
$=66 \mathrm{psf}$
Controlled Random Layup Span, 8 ft , Bending Stress $=1400 \mathrm{psi}$
$=55 \mathrm{psf}$
6) Table 5: "Two Inch Nominal Thickness, Allowable Roof Load Limited by Deflection"

Simple Span, 8 ft , Modulus of Elasticity $=1,500,000 \mathrm{psi}$
L/180........... 29 psf
L/240........... 22 psf
$\mathrm{L} / 360 \ldots \ldots \ldots .(29 \mathrm{psf})(0.5)=14.5 \mathrm{psf}$
Controlled Random Layup Span, 8 ft , Modulus of Elasticity $=1,500,000 \mathrm{psi}$
L/180........... 38 psf
L/240........... 29 psf
$\mathrm{L} / 360 \ldots \ldots \ldots .(38 \mathrm{psf})(0.5)=19 \mathrm{psf}$
Cantilevered Pieces Intermixed, 8 ft , Modulus of Elasticity $=1,500,000 \mathrm{psi}$
$\mathrm{L} / 180 \ldots \ldots \ldots . .(38 \mathrm{psf})(1.05)=39.9 \mathrm{psf}$
$\mathrm{L} / 240 \ldots \ldots \ldots .(29 \mathrm{psf})(1.05)=30.45 \mathrm{psf}$
$\mathrm{L} / 360 \ldots \ldots \ldots . .(39.9 \mathrm{psf})(0.5)=19.95 \mathrm{psf}$
Combination Simple Span and Two-Span Continuous, $8 \mathrm{ft}, \mathrm{E}=1,500,000 \mathrm{psi}$
$\mathrm{L} / 180 \ldots \ldots \ldots . .(38 \mathrm{psf})(1.31)=49.78 \mathrm{psf}$
$\mathrm{L} / 240 \ldots \ldots \ldots . .(29 \mathrm{psf})(1.31)=37.99 \mathrm{psf}$
$\mathrm{L} / 360 \ldots \ldots \ldots .(49.78 \mathrm{psf})(0.5)=24.89 \mathrm{psf}$
Two-Span Continuous, $8 \mathrm{ft}, \mathrm{E}=1,500,000 \mathrm{psi}$
$\mathrm{L} / 180 \ldots \ldots \ldots . .(38 \mathrm{psf})(1.85)=70.3 \mathrm{psf}$
$\mathrm{L} / 240 \ldots \ldots \ldots . .(29 \mathrm{psf})(1.85)=53.65 \mathrm{psf}$
$\mathrm{L} / 360 \ldots \ldots \ldots .(70.3 \mathrm{psf})(0.5)=35.15 \mathrm{psf}$
7) Table 6: "Three and Four Inch Nominal Thickness, Allowable Roof Load Limited by Bending, Simple Span and Controlled Random Layups (3 or more spans)"

3 in. Nominal Thickness, 8 ft , Bending Stress $=1400 \mathrm{psi}$
$=182 \mathrm{psf}$
4 in. Nominal Thickness, 8 ft , Bending Stress $=1400 \mathrm{psi}$
$=357 \mathrm{psi}$
8) Table 7: "Three and Four Inch Nominal Thickness, Allowable Roof Load Limited by Deflection, Simple Span Layup"

3 in. Nominal Thickness, $8 \mathrm{ft}, \mathrm{E}=1,500,000 \mathrm{psi}$
L/180.......... 136 psf
L/240............ 102 psf
$\mathrm{L} / 360 \ldots \ldots \ldots .(136 \mathrm{psf})(0.5)=68 \mathrm{psf}$
4 in. Nominal Thickness, $8 \mathrm{ft}, \mathrm{E}=1,500,000 \mathrm{psi}$
L/180.......... 347 psf
L/240........... 261 psf
$\mathrm{L} / 360 \ldots \ldots \ldots .(347 \mathrm{psf})(0.5)=173.5 \mathrm{psf}$
9) Table 8: "Three and Four Inch Nominal Thickness, Allowable Roof Load Limited by Deflection, Controlled Random Layup (3 or more spans)"

3 in. Nominal Thickness, $8 \mathrm{ft}, \mathrm{E}=1,500,000 \mathrm{psi}$
L/180.......... 205 psf
L/240........... 154 psf
$\mathrm{L} / 360 \ldots \ldots \ldots .(205 \mathrm{psf})(0.5)=102.5 \mathrm{psf}$
Cantilevered Pieces Intermixed, 3 in., $8 \mathrm{ft}, \mathrm{E}=1,500,000 \mathrm{psi}$
$\mathrm{L} / 180 \ldots \ldots \ldots .(205 \mathrm{psf})(0.90)=184.5 \mathrm{psf}$
$\mathrm{L} / 240 \ldots \ldots \ldots . .(154 \mathrm{psf})(0.90)=138.6 \mathrm{psf}$
$\mathrm{L} / 360 \ldots \ldots \ldots .(184.5 \mathrm{psf})(0.5)=92.25 \mathrm{psf}$
Combination Simple Spans and Two-Span Continuous, 3 in., 8 ft
$\mathrm{L} / 180 \ldots \ldots \ldots .(205 \mathrm{psf})(1.13)=231.65 \mathrm{psf}$
$\mathrm{L} / 240 \ldots \ldots \ldots .(154 \mathrm{psf})(1.13)=174.02 \mathrm{psf}$
$\mathrm{L} / 360 \ldots \ldots \ldots . .(231.65 \mathrm{psf})(0.5)=115.825 \mathrm{psf}$
Two-Span Continuous, 3 in., $8 \mathrm{ft}, \mathrm{E}=1,500,000 \mathrm{psi}$
$\mathrm{L} / 180 \ldots \ldots \ldots .(205 \mathrm{psf})(1.59)=325.95 \mathrm{psf}$
$\mathrm{L} / 240 \ldots \ldots \ldots .(154 \mathrm{psf})(1.59)=244.86 \mathrm{psf}$
$\mathrm{L} / 360 \ldots \ldots \ldots . .(325.95 \mathrm{psf})(0.5)=162.975 \mathrm{psf}$
4 in. Nominal Thickness, $8 \mathrm{ft}, \mathrm{E}=1,500,00 \mathrm{psi}$
L/180........... 562 psf
L/240........... 421 psf
$\mathrm{L} / 360 \ldots \ldots \ldots . .(562 \mathrm{psf})(0.5)=281 \mathrm{psf}$
Cantilevered Pieces Intermixed, $4 \mathrm{in} .8 \mathrm{ft}, \mathrm{E}=1,500,000 \mathrm{psi}$
$\mathrm{L} / 180 \ldots \ldots \ldots .(562 \mathrm{psf})(0.90)=505.8 \mathrm{psf}$
$\mathrm{L} / 240 \ldots \ldots \ldots . .(421 \mathrm{psf})(0.90)=378.9 \mathrm{psf}$
$\mathrm{L} / 360 \ldots \ldots \ldots .(505.8 \mathrm{psf})(0.5)=252.9 \mathrm{psf}$
Combination Simple Spans and Two-Span Continuous, 4 in., 8 ft
$\mathrm{L} / 180 \ldots \ldots \ldots .(562 \mathrm{psf})(1.13)=635.06 \mathrm{psf}$
$\mathrm{L} / 240 \ldots \ldots \ldots .(421 \mathrm{psf})(1.13)=475.73 \mathrm{psf}$
$\mathrm{L} / 360 \ldots \ldots \ldots .(635.06 \mathrm{psf})(1.13)=717.6178 \mathrm{psf}$
Two-Span Continuous, 4 in., $8 \mathrm{ft}, \mathrm{E}=1,500,000 \mathrm{psi}$
$\mathrm{L} / 180 \ldots \ldots \ldots .(562 \mathrm{psf})(1.59)=893.58 \mathrm{psf}$
$\mathrm{L} / 240 \ldots \ldots \ldots .(421 \mathrm{psf})(1.59)=669.39 \mathrm{psf}$
$\mathrm{L} / 360 \ldots \ldots \ldots .(893.58 \mathrm{psf})(0.5)=446.79 \mathrm{psf}$

Wood Diaphragm:

Support for gravity loads applied to the roof is provided by the 3-inch tongue-and-groove decking. Plywood will be nailed directly into the tongue-and-groove decking to ensure diaphragm action of the roof system.

From ANSI / AF\&PA SDPWS-2005 "Special Design Provisions for Wind and Seismic":
Section 4.2.4: Diaphragm Aspect Ratios (p. 14)
Wood structural panel, blocked: Maximum L/W ratio $=3: 1$

$$
\text { Aspect ratio }=\left(156^{\prime} / 130^{\prime}\right): 1=1.2: 1<3: 1 \therefore \text { OK }
$$

Section 4.2.3: Unit Shear Capacities
For ASD allowable unit shear capacity, divide table values (nominal unit shear capacity) by 2.0 (the ASD reduction factor).

Lateral Loads to Sheathing:

SEISMIC LOADS:

Will only see "Building 1 " seismic loads
Total load $=8.96 \mathrm{k}($ level 1$)+31.43 \mathrm{k}($ level 2$)+40.79 \mathrm{k}($ level 3$)=81.16 \mathrm{k}$ (assuming that all lateral load is transferred to roof diaphragm: worst-case scenario) Longitudinal Direction (North/South):

Assume load is evenly distributed: $\mathrm{w}_{\mathrm{u}}=(81.16 \mathrm{k}) / 130^{\prime}=0.6243 \mathrm{k} / \mathrm{ft}$

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{u}}=(0.6243 \mathrm{k} / \mathrm{ft})\left(130^{\prime}\right) / 2=40.58 \mathrm{k} \\
& v_{\mathrm{u}}=\mathrm{V}_{\mathrm{u}} / \mathrm{b}=(40.58 \mathrm{k}) /\left(156^{\prime}\right)=0.26013 \mathrm{k} / \mathrm{ft}=260.13 \mathrm{lb} / \mathrm{ft}
\end{aligned}
$$

Transverse Direction (East/West):

Assume load is evenly distributed: $\mathrm{w}_{\mathrm{u}}=(81.16 \mathrm{k}) / 156^{\prime}=0.5203 \mathrm{k} / \mathrm{ft}$
$\mathrm{V}_{\mathrm{u}}=(0.5203 \mathrm{k} / \mathrm{ft})\left(156^{\prime}\right) / 2=40.58 \mathrm{k}$
$v_{\mathrm{u}}=\mathrm{V}_{\mathrm{u}} / \mathrm{b}=(40.58 \mathrm{k}) /\left(130^{\prime}\right)=0.31215 \mathrm{k} / \mathrm{ft}=312.15 \mathrm{lb} / \mathrm{ft}$
Roof Unit Shears (ASD):
From load combinations: Use 0.7 E

Longitudinal Direction: $v=0.7 \mathrm{E}=(0.7)(260.13 \mathrm{lb} / \mathrm{ft})=182.09 \mathrm{lb} / \mathrm{ft}$

Transverse Direction: $v=0.7 \mathrm{E}=(0.7)(312.15 \mathrm{lb} / \mathrm{ft})=218.51 \mathrm{lb} / \mathrm{ft}$
Wood Structural Panel Sheathing and Nailing:
Assume load cases 2 and 4.
Transverse Direction (Case 4):
Need table value (from Table A.4.2A) of $(218.51 \mathrm{lb} / \mathrm{ft})(2)=437.01 \mathrm{lb} / \mathrm{ft}$
Use:
3/8" Structural I plywood
All edges supported and nailed into 3 in . minimum nominal framing (blocking is provided by tongue-and-groove decking)
8d common nails at:
6 -in. o.c. boundary and continuous panel edges
6 -in. o.c. other panel edges (blocking is provided)
12 -in. o.c. in field
Allowable $v=600 \mathrm{lb} / \mathrm{ft} / 2=300 \mathrm{lb} / \mathrm{ft}>218.51 \mathrm{lb} / \mathrm{ft} \therefore \mathrm{OK}$
$>182.09 \mathrm{lb} / \mathrm{ft} \therefore$ OK
WIND LOADS:
North/South Direction:
Total load $=66.68 \mathrm{k}($ level 1$)+46.46 \mathrm{k}($ level 2$)+37.63 \mathrm{k}($ level 3$)=150.77 \mathrm{k}$
Assume that half of total lateral load is transferred to roof diaphragm:

$$
150.77 \mathrm{k} / 2=75.39 \mathrm{k}
$$

Longitudinal Direction (North/South):
Assume load is evenly distributed: $\mathrm{w}_{\mathrm{u}}=(75.385 \mathrm{k}) / 130^{\prime}=0.5799 \mathrm{k} / \mathrm{ft}$

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{u}}=(0.5799 \mathrm{k} / \mathrm{ft})\left(130^{\prime}\right) / 2=37.69 \mathrm{k} \\
& v_{\mathrm{u}}=\mathrm{V}_{\mathrm{u}} / \mathrm{b}=(37.69 \mathrm{k}) /\left(156^{\prime}\right)=0.24162 \mathrm{k} / \mathrm{ft}=241.62 \mathrm{lb} / \mathrm{ft}
\end{aligned}
$$

East/West Direction:
Total load $=44.89 \mathrm{k}($ level 1$)+51.49 \mathrm{k}($ level 2$)+26.85 \mathrm{k}($ level 3$)=123.23 \mathrm{k}$
Assume that half of total lateral load is transferred to roof diaphragm:

$$
123.23 \mathrm{k} / 2=61.62 \mathrm{k}
$$

Transverse Direction (East/West):

Assume load is evenly distributed: $\mathrm{w}_{\mathrm{u}}=(61.62 \mathrm{k}) / 156^{\prime}=0.3950 \mathrm{k} / \mathrm{ft}$
$\mathrm{V}_{\mathrm{u}}=(0.3950 \mathrm{k} / \mathrm{ft})\left(156^{\prime}\right) / 2=30.81 \mathrm{k}$
$v_{\mathrm{u}}=\mathrm{V}_{\mathrm{u}} / \mathrm{b}=(30.81 \mathrm{k}) /\left(130^{\prime}\right)=0.2370 \mathrm{k} / \mathrm{ft}=236.98 \mathrm{lb} / \mathrm{ft}$
Roof Unit Shears (ASD):
From load combinations: Use 1.0W
Longitudinal Direction: $v=1.0 \mathrm{~W}=(1.0)(241.62 \mathrm{lb} / \mathrm{ft})=241.62 \mathrm{lb} / \mathrm{ft}$
Transverse Direction: $v=1.0 \mathrm{~W}=(1.0)(236.98 \mathrm{lb} / \mathrm{ft})=236.98 \mathrm{lb} / \mathrm{ft}$
Wood Structural Panel Sheathing and Nailing:
Assume load cases 2 and 4.
Transverse Direction (Case 4):
Need table value (from Table A.4.2A) of $(241.62 \mathrm{lb} / \mathrm{ft})(2)=483.24 \mathrm{lb} / \mathrm{ft}$
Use:

5/16" Structural I plywood

All edges supported and nailed into 3 in. minimum nominal framing (blocking is provided by tongue-and-groove decking)
6d common nails at: 6 -in. o.c. boundary and continuous panel edges 6 -in. o.c. other panel edges (blocking is provided) 12 -in. o.c. in field
Allowable $v=590 \mathrm{lb} / \mathrm{ft} / 2=300 \mathrm{lb} / \mathrm{ft}>241.62 \mathrm{lb} / \mathrm{ft} \therefore \mathrm{OK}$

$$
\text { > } 236.98 \mathrm{lb} / \mathrm{ft} \therefore \mathrm{OK}
$$

Seismic load requirements control

```
\(\therefore\) Use: \(\quad 3 / 8\) " Structural I plywood
    All edges supported and nailed into 3 in . minimum nominal framing
    (blocking is provided by tongue-and-groove decking)
    8d common nails at:
        6 -in. o.c. boundary and continuous panel edges
        6 -in. o.c. other panel edges (blocking is provided)
        12 -in. o.c. in field
    Allowable \(v=600 \mathrm{lb} / \mathrm{ft} / 2=300 \mathrm{lb} / \mathrm{ft}>218.51 \mathrm{lb} / \mathrm{ft} \therefore \mathrm{OK}\)
    \(>182.09 \mathrm{lb} / \mathrm{ft} \therefore\) OK
```


Design of Chords:

Longitudinal Direction:

SEISMIC LOADS:

$$
\begin{aligned}
& \mathrm{M}_{\mathrm{u}, \max }=\mathrm{wL}^{2} / 8=(0.6243 \mathrm{k} / \mathrm{ft})\left(130^{\prime}\right)^{2} / 8=1318.83 \mathrm{k}-\mathrm{ft} \\
& \mathrm{~T}_{\mathrm{u}}=\mathrm{C}_{\mathrm{u}}=\mathrm{M}_{\mathrm{u}} / \mathrm{b}=1318.83 \mathrm{k}-\mathrm{ft} / 156^{\prime}=8.454 \mathrm{k}
\end{aligned}
$$

WIND LOADS:
$\mathrm{M}_{\mathrm{u}, \text { max }}=\mathrm{wL}^{2} / 8=(0.5799 \mathrm{k} / \mathrm{ft})\left(130^{\prime}\right)^{2} / 8=1225.039 \mathrm{k}-\mathrm{ft}$
$\mathrm{T}_{\mathrm{u}}=\mathrm{C}_{\mathrm{u}}=\mathrm{M}_{\mathrm{u}} / \mathrm{b}=1225.039 \mathrm{k}-\mathrm{ft} / 156^{\prime}=7.853 \mathrm{k}$
\therefore Seismic controls
Check the $31 / 2 " \times 51 / 2 "$ Southern Pine glulam ID \#50 member already designed for the braced frames at column line 1 .
$\mathrm{F}_{\mathrm{c}}=2300 \mathrm{psi}$ (Glulam ID \#50, S.P.) (p. 66 NDS Supplement)
$\mathrm{F}_{\mathrm{b}}=2100 \mathrm{psi}$ (Glulam ID \#50, S.P.) (p. 66 NDS Supplement)
$\mathrm{A}=19.25 \mathrm{in}^{2}$
$\mathrm{E}_{\text {min }}=980,000 \mathrm{psi}$

LOAD COMBINATION: E

Axial Compression:
$\mathrm{P}=8.454$ kips (Compression)
$\mathrm{L}=8.0^{\prime}$
$\mathrm{f}_{\mathrm{c}}=\mathrm{P} / \mathrm{A}=8,454 \mathrm{lb} / 19.25 \mathrm{in}^{2}=439.169 \mathrm{psi}$
$\left(\mathrm{l}_{\mathrm{e}} / \mathrm{d}\right)_{\mathrm{x}}=\left[\left(8.0^{\prime}\right)(12 \mathrm{in} / \mathrm{ft})\right] / 5.5^{\prime \prime}=17.4545<50 \therefore \mathrm{OK}$
$\left(1_{e} / d\right)_{y}=0$ because of lateral support provided by roof diaphragm
$\left(\mathrm{l}_{\mathrm{e}} / \mathrm{d}\right)_{\max }=\left(\mathrm{l}_{\mathrm{e}} / \mathrm{d}\right)_{\mathrm{x}}=17.4545$
The larger slenderness ratio governs the adjusted design value. Therefore, the strong axis of the member is critical, and $\left(1_{e} / \mathrm{d}\right)_{\mathrm{x}}$ is used to determine F^{\prime}.
$C_{D}=1.6$ (for seismic load; load combination E)
$C_{M}=0.73$ for F_{c} (p. 64, NDS Supplement)
$C_{M}=0.833$ for E and $E_{\text {min }}$ (p. 64, NDS Supplement)
$\mathrm{C}_{\mathrm{t}}=1.0$
$\mathrm{E}^{\prime}{ }_{\text {min }}=\left(\mathrm{E}_{\text {min }}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)=(980,000)(0.833)(1.0)=816,340 \mathrm{psi}$
$\mathrm{c}=0.9$ (glulam)
$\mathrm{F}_{\mathrm{cE}}=\left[0.822 \mathrm{E}^{\prime}{ }_{\text {min }}\right] /\left[(1 / \mathrm{d})^{2}\right]=[(0.822)(816,340 \mathrm{psi})] /\left[(17.4545)^{2}\right]=2202.562 \mathrm{psi}$
Here, $1_{e} / d$ is based on $\left(l_{e} / d\right)_{\text {max }}$.
$\mathrm{F}_{\mathrm{c}}{ }^{*}=\mathrm{F}_{\mathrm{c}}\left(\mathrm{C}_{\mathrm{D}}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)=(2300 \mathrm{psi})(1.6)(0.73)(1.0)=2686.4 \mathrm{psi}$
$\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}=2202.562 / 2686.4=0.8199$
$\left[1+\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}\right] /(2 \mathrm{c})=[1+0.8199] /[(2)(0.9)]=1.0111$
$\mathrm{C}_{\mathrm{P}}=\left\{\left[1+\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}\right] /(2 \mathrm{c})\right\}-\sqrt{ }\left\{\left[\left(1+\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}\right) /(2 \mathrm{c})\right]^{2}-\left[\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}\right] / \mathrm{c}\right\}$
$=\{1.0111\}-\sqrt{ }\left\{[1.0111]^{2}-[0.8199 / 0.9]\right\}$
$=0.6776$
$\mathrm{F}_{\mathrm{c}}{ }^{\prime}=\mathrm{F}_{\mathrm{c}}{ }^{*}\left(\mathrm{C}_{\mathrm{P}}\right)=(2686.4 \mathrm{psi})(0.6776)=1820.239 \mathrm{psi}>\mathrm{f}_{\mathrm{c}}=439.169 \mathrm{psi} \therefore \mathbf{O K}$
Axial Load: $\mathrm{P}=8.454 \mathrm{kips}($ Tension $)$
Axial Tension:
$\mathrm{P}=8.454 \mathrm{kips}$ (Tension)
$\mathrm{F}_{\mathrm{t}}=1550$ psi (Glulam ID \#50, S.P.) (p. 66 NDS Supplement)
$C_{D}=1.6$ (for seismic load; load combination E)
$C_{M}=0.8$ for $F_{t}(p .64$, NDS Supplement $)$
$\mathrm{C}_{\mathrm{t}}=1.0$
$\mathrm{F}_{\mathrm{t}}^{\prime}=\mathrm{F}_{\mathrm{t}}\left(\mathrm{C}_{\mathrm{D}}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)=(1550 \mathrm{psi})(1.6)(0.8)(1.0)=1984 \mathrm{psi}$
$\mathrm{P}=\left(\mathrm{F}_{\mathrm{t}}\right)(\mathrm{A})$
Req'd $\mathrm{A}_{\mathrm{n}}=\mathrm{P} / \mathrm{F}_{\mathrm{t}}=8,454 \mathrm{lb} / 1984 \mathrm{psi}=4.261 \mathrm{in}^{2}$
Assume (2) rows of $3 / 4$ " diameter bolts.
Req'd $\mathrm{A}_{\mathrm{g}}=\mathrm{A}_{\mathrm{n}}+\mathrm{A}_{\mathrm{h}}=4.261 \mathrm{in}^{2}+(3.5$ " $)\left[(2)\left(3 / 4 "+1 / 16^{\prime \prime}\right)\right]=9.949 \mathrm{in}^{2}$
Try $31 / 2 " \times 51 / 2 "\left(\mathrm{~A}=19.25 \mathrm{in}^{2}>9.95 \mathrm{in}^{2} \therefore \mathrm{OK}\right)$
$\mathrm{A}_{\mathrm{n}}=19.25 \mathrm{in}^{2}-(3.5 ")[(2)(3 / 4 "+1 / 16 ")]=13.56 \mathrm{in}^{2}$
$\mathrm{f}_{\mathrm{t}}=\mathrm{T} / \mathrm{A}_{\mathrm{n}}=(8,454 \mathrm{lb}) /\left(13.56 \mathrm{in}^{2}\right)=623.34 \mathrm{psi}<\mathrm{F}^{\prime}{ }_{\mathrm{t}}=1984 \mathrm{psi} \therefore \mathbf{O K}$

Use $31 / 2$ " x $5 \underset{1}{1 / 2 "}$ Southern Pine glulam ID \#50

Transverse Direction:

SEISMIC LOADS:

$$
\begin{aligned}
& \mathrm{M}_{\mathrm{u}, \max }=\mathrm{wL}^{2} / 8=(0.5203 \mathrm{k} / \mathrm{ft})\left(156^{\prime}\right)^{2} / 8=1582.75 \mathrm{k}-\mathrm{ft} \\
& \mathrm{~T}_{\mathrm{u}}=\mathrm{C}_{\mathrm{u}}=\mathrm{M}_{\mathrm{u}} / \mathrm{b}=1582.75 \mathrm{k}-\mathrm{ft} / 130^{\prime}=12.175 \mathrm{k}
\end{aligned}
$$

WIND LOADS:
$M_{u, \max }=\mathrm{wL}^{2} / 8=(0.3950 \mathrm{k} / \mathrm{ft})\left(156^{\prime}\right)^{2} / 8=1201.59 \mathrm{k}-\mathrm{ft}$
$\mathrm{T}_{\mathrm{u}}=\mathrm{C}_{\mathrm{u}}=\mathrm{M}_{\mathrm{u}} / \mathrm{b}=1201.59 \mathrm{k}-\mathrm{ft} / 130^{\prime}=9.243 \mathrm{k}$
\therefore Seismic controls

Check the 5"x $67 / 8 "$ Southern Pine glulam ID \#50 member already designed for the braced frames in the East/West direction.
$\mathrm{F}_{\mathrm{c}}=2300 \mathrm{psi}$ (Glulam ID \#50, S.P.) (p. 66 NDS Supplement)
$\mathrm{F}_{\mathrm{b}}=2100 \mathrm{psi}$ (Glulam ID \#50, S.P.) (p. 66 NDS Supplement)
$\mathrm{A}=34.38 \mathrm{in}^{2}$
$\mathrm{E}_{\text {min }}=980,000 \mathrm{psi}$

LOAD COMBINATION: W

Axial Compression:
$\mathrm{P}=12.175$ kips (Compression)
$\mathrm{L}=26.0^{\prime}$
$\mathrm{f}_{\mathrm{c}}=\mathrm{P} / \mathrm{A}=12,175 \mathrm{lb} / 34.38 \mathrm{in}^{2}=354.130 \mathrm{psi}$
$\left(1_{\mathrm{e}} / \mathrm{d}\right)_{\mathrm{x}}=\left[\left(26.0^{\prime}\right)(12 \mathrm{in} / \mathrm{ft})\right] / 5.0^{\prime \prime}=62.4>50 \therefore$ N.G.

Try 6 3/4" x 6 7/8"
$\mathrm{A}=46.41 \mathrm{in}^{2}$
$\mathrm{f}_{\mathrm{c}}=\mathrm{P} / \mathrm{A}=12,175 \mathrm{lb} / 46.41 \mathrm{in}^{2}=262.336 \mathrm{psi}$
$\left(1_{\mathrm{e}} / \mathrm{d}\right)_{x}=\left[\left(26.0^{\prime}\right)(12 \mathrm{in} / \mathrm{ft})\right] / 6.75^{\prime \prime}=46.222<50 \therefore$ OK
$\left(l_{e} / d\right)_{y}=0$ because of lateral support provided by roof diaphragm
$\left(l_{\mathrm{e}} / \mathrm{d}\right)_{\max }=\left(\mathrm{l}_{\mathrm{e}} / \mathrm{d}\right)_{\mathrm{x}}=46.222$

The larger slenderness ratio governs the adjusted design value. Therefore, the strong axis of the member is critical, and $\left(l_{\mathrm{e}} / \mathrm{d}\right)_{\mathrm{x}}$ is used to determine $\mathrm{F}{ }_{\mathrm{c}}$.
$C_{D}=1.6$ (for seismic load; load combination E)
$C_{M}=0.73$ for F_{c} (p. 64, NDS Supplement)
$C_{M}=0.833$ for E and $E_{\text {min }}$ (p. 64, NDS Supplement)
$\mathrm{C}_{\mathrm{t}}=1.0$
$\mathrm{E}^{\prime}{ }_{\text {min }}=\left(\mathrm{E}_{\text {min }}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)=(980,000)(0.833)(1.0)=816,340 \mathrm{psi}$
$\mathrm{c}=0.9$ (glulam)
$\mathrm{F}_{\mathrm{cE}}=\left[0.822 \mathrm{E}^{\prime}{ }_{\text {min }}\right] /\left[\left(\mathrm{l}_{\mathrm{e}} / \mathrm{d}\right)^{2}\right]=[(0.822)(816,340 \mathrm{psi})] /\left[(46.222)^{2}\right]=314.081 \mathrm{psi}$
Here, l_{e} / d is based on $\left(l_{e} / d\right)_{\max }$.
$\mathrm{F}_{\mathrm{c}}{ }^{*}=\mathrm{F}_{\mathrm{c}}\left(\mathrm{C}_{\mathrm{D}}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)=(2300 \mathrm{psi})(1.6)(0.73)(1.0)=2686.4 \mathrm{psi}$
$\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}=314.081 / 2686.4=0.1169$
$\left[1+\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}\right] /(2 \mathrm{c})=[1+0.1169] /[(2)(0.9)]=0.6205$
$\mathrm{C}_{\mathrm{P}}=\left\{\left[1+\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}\right] /(2 \mathrm{c})\right\}-\sqrt{ }\left\{\left[\left(1+\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}\right) /(2 \mathrm{c})\right]^{2}-\left[\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}\right] / \mathrm{c}\right\}$
$=\{0.6205\}-\sqrt{ }\left\{[0.6205]^{2}-[0.1169 / 0.9]\right\}$
$=0.1154$
$\mathrm{F}_{\mathrm{c}}{ }^{\prime}=\mathrm{F}_{\mathrm{c}}{ }^{*}\left(\mathrm{C}_{\mathrm{P}}\right)=(2686.4 \mathrm{psi})(0.1154)=309.969 \mathrm{psi}<\mathrm{f}_{\mathrm{c}}=354.130 \mathrm{psi} \therefore$ N.G.

Try $63 / 4$ " $\times 81 / 4$ "
$\mathrm{A}=55.69 \mathrm{in}^{2}$
$\mathrm{f}_{\mathrm{c}}=\mathrm{P} / \mathrm{A}=12,175 \mathrm{lb} / 55.69 \mathrm{in}^{2}=218.621 \mathrm{psi}$
$\left(l_{\mathrm{e}} / \mathrm{d}\right)_{x}=\left[\left(26.0^{\prime}\right)(12 \mathrm{in} / \mathrm{ft})\right] / 8.25^{\prime \prime}=37.818<50 \therefore$ OK
$\left(l_{e} / d\right)_{y}=0$ because of lateral support provided by roof diaphragm
$\left(l_{\mathrm{e}} / \mathrm{d}\right)_{\max }=\left(l_{\mathrm{e}} / \mathrm{d}\right)_{\mathrm{x}}=37.818$

The larger slenderness ratio governs the adjusted design value. Therefore, the strong axis of the member is critical, and $\left(l_{e} / d\right)_{x}$ is used to determine F ' ${ }_{c}$.
$\mathrm{F}_{\mathrm{cE}}=\left[0.822 \mathrm{E}^{\prime}{ }_{\text {min }}\right] /\left[\left(\mathrm{l}_{\mathrm{e}} / \mathrm{d}\right)^{2}\right]=[(0.822)(816,340 \mathrm{psi})] /\left[(37.818)^{2}\right]=469.182 \mathrm{psi}$
Here, l_{e} / d is based on $\left(l_{e} / d\right)_{\max }$.
$\mathrm{F}_{\mathrm{c}}{ }^{*}=\mathrm{F}_{\mathrm{c}}\left(\mathrm{C}_{\mathrm{D}}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)=(2300 \mathrm{psi})(1.6)(0.73)(1.0)=2686.4 \mathrm{psi}$
$\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}=469.182 / 2686.4=0.1747$
$\left[1+\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}\right] /(2 \mathrm{c})=[1+0.1747] /[(2)(0.9)]=0.6526$
$\mathrm{C}_{\mathrm{P}}=\left\{\left[1+\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}\right] /(2 \mathrm{c})\right\}-\sqrt{ }\left\{\left[\left(1+\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}\right) /(2 \mathrm{c})\right]^{2}-\left[\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}\right] / \mathrm{c}\right\}$
$=\{0.6526\}-\sqrt{ }\left\{[0.6526]^{2}-[0.1747 / 0.9]\right\}$
$=0.1712$
$\mathrm{F}^{\prime}{ }_{\mathrm{c}}=\mathrm{F}_{\mathrm{c}}{ }^{*}\left(\mathrm{C}_{\mathrm{P}}\right)=(2686.4 \mathrm{psi})(0.1712)=459.888 \mathrm{psi}>\mathrm{f}_{\mathrm{c}}=218.621 \mathrm{psi} \therefore$ O.K.
Axial Tension:
$\mathrm{P}=12.175$ kips (Tension)
$\mathrm{F}_{\mathrm{t}}=1550 \mathrm{psi}($ Glulam ID \#50, S.P.) (p. 66 NDS Supplement)
$C_{D}=1.6$ (for seismic load; load combination E)
$C_{M}=0.8$ for $F_{t}($ p. 64, NDS Supplement $)$
$\mathrm{C}_{\mathrm{t}}=1.0$
$\mathrm{F}_{\mathrm{t}}{ }^{\prime}=\mathrm{F}_{\mathrm{t}}\left(\mathrm{C}_{\mathrm{D}}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)=(1550 \mathrm{psi})(1.6)(0.8)(1.0)=1984 \mathrm{psi}$
$P=\left(F^{\prime}{ }_{t}\right)(A)$
Req' ${ }^{\prime} \mathrm{A}_{\mathrm{n}}=\mathrm{P} / \mathrm{F}^{\prime}{ }_{\mathrm{t}}=12,175 \mathrm{lb} / 1984 \mathrm{psi}=6.137 \mathrm{in}^{2}$
Assume (2) rows of $3 / 4$ " diameter bolts.
Req'd $A_{g}=A_{n}+A_{h}=6.137$ in $^{2}+\left(6.75^{\prime \prime}\right)\left[(2)\left(3 / 4 "+1 / 16^{\prime \prime}\right)\right]=17.106$ in 2
Try $6 \frac{3 / 4 "}{} \times 81 / 4 "\left(\mathrm{~A}=55.69 \mathrm{in}^{2}>17.106 \mathrm{in}^{2} \therefore \mathrm{OK}\right)$
$\mathrm{A}_{\mathrm{n}}=55.69 \mathrm{in}^{2}-(6.75 ")\left[(2)\left(3 / 4 "+1 / 16^{\prime \prime}\right)\right]=44.721 \mathrm{in}^{2}$
$\mathrm{f}_{\mathrm{t}}=\mathrm{T} / \mathrm{A}_{\mathrm{n}}=(12,175 \mathrm{lb}) /\left(44.72 \mathrm{in}^{2}\right)=272.242 \mathrm{psi}<\mathrm{F}^{\prime}{ }_{\mathrm{t}}=1984 \mathrm{psi} \therefore$ OK
Use $63 / 4$ " x $81 / 4$ " Southern Pine glulam ID \#50

Wood Truss Member Connections

Bolted Metal Side Plates

Bottom Chord Heel Connections

Maximum tension force at heel (from bottom chord):

$$
\begin{aligned}
& D+S=(24.616 k+7.979 k)+18.954 k=51.549 k \\
& D+L_{r}=(24.616 k+7.979 k)+16.411 k=49.006 k
\end{aligned}
$$

Other load combinations will not control by inspection.
LOAD COMBINATION: $D+S$

For $63 / 4$ " thick southern pine glulam member, wit h $1 / 4$ " steel side plates, load applied parallel to grain, the nominal design value " Z " of a $3 / 4$ " bolt in double shear is:

$$
\mathrm{Z}=3460 \mathrm{lb} \text { (Table 11I, p. 90, NDS) }
$$

The allowable bolt design value is:

$$
\begin{aligned}
& Z^{\prime}=(\mathrm{Z})\left(\mathrm{C}_{\mathrm{D}}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)\left(\mathrm{C}_{\mathrm{g}}\right)\left(\mathrm{C}_{\Delta}\right)\left(\mathrm{C}_{\mathrm{eg}}\right)\left(\mathrm{C}_{\mathrm{di}}\right)\left(\mathrm{C}_{\mathrm{tn}}\right) \\
& \mathrm{C}_{\mathrm{D}}=1.15 \\
& \mathrm{C}_{\mathrm{M}}=0.7 \text { (for dowel-type fasteners with in-service moisture content }>19 \% \text {) } \\
& \mathrm{C}_{\mathrm{t}}=1.0 \\
& \mathrm{C}_{\mathrm{eg}}=\mathrm{C}_{\mathrm{di}}=\mathrm{C}_{\mathrm{tn}}=1.0 \\
& Z^{\prime}=(3480 \mathrm{lb})(1.15)(0.7)(1.0)\left(\mathrm{C}_{\mathrm{g}}\right)\left(\mathrm{C}_{\Delta}\right)(1.0)(1.0)(1.0)=(2801.4 \mathrm{lb})\left(\mathrm{C}_{\mathrm{g}}\right)\left(\mathrm{C}_{\Delta}\right)
\end{aligned}
$$

Check bolt spacing and edge distances:
Bottom Chord: $63 / 4 " \times 81 / 4 "$
Table 11.5.1A: Edge Distance Requirements

Parallel to Grain:

$$
\begin{aligned}
& 1 / D=\operatorname{minimum} \text { of }\left[1_{\mathrm{m}} / D \text { or } 1_{s} / D\right] \\
& 1_{\mathrm{m}} / D=6.75 " / 0.75^{\prime}=9 \\
& 1_{s} / D=(2)(1 / 4 ") / 0.75^{\prime}=0.667 \text { (Governs) }
\end{aligned}
$$

$1 / D=0.667<6 \therefore$ Min. Edge Distance $=1.5 \mathrm{D}=(1.5)\left(0.75^{\prime \prime}\right)=1.125^{\prime \prime}$

Table 11.5.1B: End Distance Requirements

Direction of Loading is Parallel to Grain, Tension: (fastener bearing toward member end)

For softwoods: Minimum End Distance for $\mathrm{C}_{\Delta}=0.5$ is $3 \mathrm{D}=(3)\left(0.75^{\prime \prime}\right)=2.625^{\prime \prime}$ Minimum End Distance for $\mathrm{C}_{\Delta}=1.0$ is $7 \mathrm{D}=(7)\left(0.75^{\prime \prime}\right)=5.25^{\prime \prime}$

Table 11.5.1C: Spacing Requirements for Fasteners in a Row

Direction of Loading is Parallel to Grain:

Minimum Spacing $=3 \mathrm{D}=(3)\left(0.75^{\prime \prime}\right)=2.25^{\prime \prime}$

Minimum Spacing for $C_{\Delta}=1.0$ is $4 \mathrm{D}=(4)\left(0.75^{\prime \prime}\right)=3.0 \prime$

Table 11.5.1D: Spacing Requirements Between Rows

Direction of Loading is Parallel to Grain:
Minimum Spacing $=1.5 \mathrm{D}=(1.5)\left(0.75^{\prime \prime}\right)=1.125^{\prime \prime}$

Spacing between outer rows of bolts $\leq 5 "$

Assuming that all bolt spacing, edge distances, and end distances meet the requirements for $\mathrm{C}_{\Delta}=1.0$

$$
\mathrm{Z}^{\prime}=(2801.4 \mathrm{lb})\left(\mathrm{C}_{\mathrm{g}}\right)\left(\mathrm{C}_{\Delta}\right)=(2801.4 \mathrm{lb})\left(\mathrm{C}_{\mathrm{g}}\right)(1.0)=2801.4 \mathrm{lb}\left(\mathrm{C}_{\mathrm{g}}\right)
$$

$\#$ of bolts required $=(51,549 \mathrm{lb}) /(2801.4 \mathrm{lb} /$ bolt $)=18.4$ bolts \therefore try 20 bolts

Try (20) $3 / 4 "$ bolts arranged in (2) rows of ten each.

Check bolt capacity with group action:
Area of main member: $\mathrm{A}_{\mathrm{m}}=\left(6.75^{\prime \prime}\right)\left(8.25^{\prime \prime}\right)=55.69 \mathrm{in}^{2}$

Area of side plates, assuming $1 / 4 " \times 6 "$, is

$$
\begin{array}{r}
\mathrm{A}_{\mathrm{s}}=(2)\left[\left(0.25^{\prime \prime}\right)\left(6^{\prime \prime}\right)\right]=3.0 \mathrm{in}^{2} \\
\mathrm{~A}_{\mathrm{m}} / \mathrm{A}_{\mathrm{s}}=\left(55.69 \mathrm{in}^{2}\right) /\left(3.0 \mathrm{in}^{2}\right)=18.5633
\end{array}
$$

Table 10.3.6C (NDS): Group Action Factors, C_{g}, for Bolt or Lag Screw Connections with Steel Side Plates
(Tabulated group action factors $\left(\mathrm{C}_{\mathrm{g}}\right)$ are conservative for $\mathrm{D}<1$ " or $\mathrm{s}<4$ ")

For $A_{m} / A_{s}=18$:
$\mathrm{A}_{\mathrm{m}}=40 \mathrm{in}^{2} \ldots \ldots . .(10)$ fasteners per row $\ldots \ldots . \mathrm{C}_{\mathrm{g}}=0.80$
$A_{m}=64 \mathrm{in}^{2} \ldots \ldots .(10)$ fasteners per row $\ldots \ldots . . C_{g}=0.86$
Interpolate for $\mathrm{A}_{\mathrm{m}}=55.69 \mathrm{in}^{2}: \mathrm{C}_{\mathrm{g}}=0.8392$
For $A_{m} / A_{s}=24$:
$\mathrm{A}_{\mathrm{m}}=40 \mathrm{in}^{2} \ldots \ldots .(10)$ fasteners per row........ $\mathrm{C}_{\mathrm{g}}=0.79$
$A_{m}=64 \mathrm{in}^{2} \ldots \ldots$. (10) fasteners per row $\ldots \ldots . \mathrm{C}_{\mathrm{g}}=0.85$
Interpolate for $\mathrm{A}_{\mathrm{m}}=55.69 \mathrm{in}^{2}: \mathrm{C}_{\mathrm{g}}=0.8292$
Interpolate for $\mathrm{A}_{\mathrm{m}} / \mathrm{A}_{\mathrm{s}}=18.5633: \mathrm{C}_{\mathrm{g}}=0.8383$
Connection Capacity $=(20$ bolts $)(2801.4 \mathrm{lb})(0.8383)=46,968 \mathrm{lb}<51,549 \mathrm{lb} \therefore$ N.G.

Try (22) $3 / 4 "$ bolts arranged in (2) rows of eleven each.
Table 10.3.6C (NDS): Group Action Factors, C_{g}, for Bolt or Lag Screw Connections with Steel Side Plates
(Tabulated group action factors $\left(\mathrm{C}_{\mathrm{g}}\right)$ are conservative for $\mathrm{D}<1$ " or $\mathrm{s}<4$ ")
For $\mathrm{A}_{\mathrm{m}} / \mathrm{A}_{\mathrm{s}}=18$:
$A_{m}=40 i n^{2} \ldots \ldots$. (11) fasteners per row........ $C_{g}=0.77$
$A_{m}=64 \mathrm{in}^{2} \ldots \ldots$. (11) fasteners per row........ $C_{g}=0.83$
Interpolate for $\mathrm{A}_{\mathrm{m}}=55.69 \mathrm{in}^{2}: \mathrm{C}_{\mathrm{g}}=0.8092$
For $A_{m} / A_{s}=24$:
$A_{m}=40 \mathrm{in}^{2} \ldots \ldots$. (11) fasteners per row $\ldots \ldots . \mathrm{C}_{\mathrm{g}}=0.76$
$A_{m}=64 \mathrm{in}^{2} \ldots \ldots$. (11) fasteners per row $\ldots \ldots . . C_{g}=0.83$
Interpolate for $\mathrm{A}_{\mathrm{m}}=55.69 \mathrm{in}^{2}: \mathrm{C}_{\mathrm{g}}=0.8058$
Interpolate for $A_{m} / A_{s}=18.5633: C_{g}=0.8089$

Connection Capacity $=(22$ bolts $)(2801.4 \mathrm{lb})(0.8089)=49,853 \mathrm{lb}<51,549 \mathrm{lb} \therefore$ N.G.

Try (24) $3 / 4 "$ bolts arranged in (2) rows of twelve each.

Table 10.3.6C (NDS): Group Action Factors, C_{g}, for Bolt or Lag Screw Connections with Steel Side Plates
(Tabulated group action factors $\left(\mathrm{C}_{\mathrm{g}}\right)$ are conservative for $\mathrm{D}<1$ " or $\mathrm{s}<4$ ")
For $\mathrm{A}_{\mathrm{m}} / \mathrm{A}_{\mathrm{s}}=18$:
$\mathrm{A}_{\mathrm{m}}=40 \mathrm{in}^{2} \ldots \ldots$. (11) fasteners per row........ $\mathrm{C}_{\mathrm{g}}=0.73$
$A_{m}=64$ in $^{2} \ldots \ldots$. (11) fasteners per row........ $C_{g}=0.81$
Interpolate for $\mathrm{A}_{\mathrm{m}}=55.69 \mathrm{in}^{2}: \mathrm{C}_{\mathrm{g}}=0.7823$
For $\mathrm{A}_{\mathrm{m}} / \mathrm{A}_{\mathrm{s}}=24$:
$\mathrm{A}_{\mathrm{m}}=40 \mathrm{in}^{2} \ldots \ldots .$. (11) fasteners per row........ $\mathrm{C}_{\mathrm{g}}=0.72$
$\mathrm{A}_{\mathrm{m}}=64 \mathrm{in}^{2} \ldots \ldots .$. (11) fasteners per row........Cg $=0.80$
Interpolate for $\mathrm{A}_{\mathrm{m}}=55.69 \mathrm{in}^{2}: \mathrm{C}_{\mathrm{g}}=0.7723$
Interpolate for $\mathrm{A}_{\mathrm{m}} / \mathrm{A}_{\mathrm{s}}=18.5633: \mathrm{C}_{\mathrm{g}}=0.7814$
Connection Capacity $=(24$ bolts $)(2801.4 \mathrm{lb})(0.7814)=52,536 \mathrm{lb}>51,549 \mathrm{lb} \therefore$ O.K.
LOAD COMBINATION: $D+L_{r}$

$$
\begin{aligned}
& \mathrm{P}=49,006 \mathrm{lb} \\
& \mathrm{C}_{\mathrm{D}}=1.0
\end{aligned}
$$

The allowable bolt design value is:

$$
\begin{aligned}
& \mathrm{Z}^{\prime}=(\mathrm{Z})\left(\mathrm{C}_{\mathrm{D}}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)\left(\mathrm{C}_{\mathrm{g}}\right)\left(\mathrm{C}_{\Delta}\right)\left(\mathrm{C}_{\mathrm{eg}}\right)\left(\mathrm{C}_{\mathrm{di}}\right)\left(\mathrm{C}_{\mathrm{tn}}\right) \\
& \mathrm{Z}^{\prime}=(3480 \mathrm{lb})(1.0)(0.7)(1.0)\left(\mathrm{C}_{\mathrm{g}}\right)\left(\mathrm{C}_{\Delta}\right)(1.0)(1.0)(1.0)=(2436 \mathrm{lb})\left(\mathrm{C}_{\mathrm{g}}\right)\left(\mathrm{C}_{\Delta}\right)
\end{aligned}
$$

Assuming that all bolt spacing, edge distances, and end distances meet the requirements for $\mathrm{C}_{\Delta}=1.0$

$$
\mathrm{Z}^{\prime}=(2436 \mathrm{lb})\left(\mathrm{C}_{\mathrm{g}}\right)\left(\mathrm{C}_{\Delta}\right)=(2436 \mathrm{lb})\left(\mathrm{C}_{\mathrm{g}}\right)(1.0)=2436 \mathrm{lb}\left(\mathrm{C}_{\mathrm{g}}\right)
$$

$\#$ of bolts required $=(49,006 \mathrm{lb}) /(2436 \mathrm{lb} /$ bolt $)=20.12$ bolts \therefore try 22 bolts
Try (22) $3 / 4$ " bolts arranged in (2) rows of eleven each.
$\mathrm{C}_{\mathrm{g}}=0.8089$
Connection Capacity $=(22$ bolts $)(2436 \mathrm{lb})(0.8089)=43,351 \mathrm{lb}<49,006 \mathrm{lb} \therefore$ N.G.

Try (24) $3 / 4$ " bolts arranged in (2) rows of twelve each.

$$
C_{g}=0.7814
$$

Connection Capacity $=(24$ bolts $)(2436 \mathrm{lb})(0.7814)=45,684 \mathrm{lb}<49,006 \mathrm{lb} \therefore$ N.G.
Try (26) $3 / 4 "$ bolts arranged in (2) rows of thirteen each.
Group Action Factor, C_{g}

$$
\begin{aligned}
& C_{g}=\left\{\left[(m)\left(1-m^{2 n}\right)\right] /\left[(n)\left(\left(1+R_{E A} m^{n}\right)(1+m)-1+m^{2 n}\right)\right]\right\}\left[\left(1+R_{E A}\right) /(1-m)\right] \\
& n=\text { number of fasteners in a row }=13 \\
& R_{E A}=\text { lesser of }\left(E_{s} A_{s}\right) /\left(\mathrm{E}_{\mathrm{m}} \mathrm{~A}_{\mathrm{m}}\right) \text { or }\left(\mathrm{E}_{\mathrm{m}} \mathrm{~A}_{\mathrm{m}}\right) /\left(\mathrm{E}_{\mathrm{s}} \mathrm{~A}_{\mathrm{s}}\right) \\
& \mathrm{E}_{\mathrm{s}}=29,000,000 \mathrm{psi} \\
& \mathrm{~A}_{\mathrm{s}}=3.0 \mathrm{in}^{2} \\
& \mathrm{E}_{\mathrm{m}}=1,900,000 \mathrm{psi} \\
& \mathrm{~A}_{\mathrm{m}}=55.69 \mathrm{in}^{2} \\
&\left(\mathrm{E}_{\mathrm{s}} \mathrm{~A}_{\mathrm{s}}\right) /\left(\mathrm{E}_{\mathrm{m}} \mathrm{~A}_{\mathrm{m}}\right)=\left[(29,000,000 \mathrm{psi})\left(3.0 \mathrm{in}^{2}\right)\right] /\left[(1,900,000 \mathrm{psi})\left(55.69 \mathrm{in}^{2}\right)\right] \\
&=0.8222 \\
&=\left[(1,900,000 \mathrm{psi})\left(55.69 \mathrm{in}^{2}\right)\right] /\left[(29,000,000 \mathrm{psi})\left(3.0 \mathrm{in}^{2}\right)\right] \\
&\left(\mathrm{E}_{\mathrm{m}} \mathrm{~A}_{\mathrm{m}}\right) /\left(\mathrm{E}_{\mathrm{s}} \mathrm{~A}_{\mathrm{s}}\right)=\left[\begin{array}{rl}
\\
& =1.2162
\end{array}\right.
\end{aligned}
$$

$$
\therefore \mathrm{R}_{\mathrm{EA}}=0.8222
$$

$$
\mathrm{s}=3^{\prime \prime}
$$

$$
\gamma=(270,000)\left(\mathrm{D}^{1.5}\right)=(270,000)(0.75)^{1.5}=175,370.14
$$

$$
\mathrm{u}=1+(\gamma)(\mathrm{s} / 2)\left[\left(1 /\left(\mathrm{E}_{\mathrm{m}} \mathrm{~A}_{\mathrm{m}}\right)\right)+\left(1 /\left(\mathrm{E}_{\mathrm{s}} \mathrm{~A}_{\mathrm{s}}\right)\right)\right]
$$

$$
=1+(175,370.14)(3 / 2)[(1 /(1,900,000)(55.69))+(1 /(29,000,000)(3.0))]
$$

$$
=1.005510
$$

$$
\mathrm{m}=\mathrm{u}-\sqrt{ }\left(\mathrm{u}^{2}-1\right)=1.005510-\sqrt{ }\left(1.005510^{2}-1\right)=0.90039
$$

$$
\begin{aligned}
\mathrm{C}_{\mathrm{g}}=\{[& \left.(0.90039)\left(1-(0.90039)^{2(13)}\right)\right] /\left[(13)\left(1+(0.8222)(0.90039)^{13}\right)(1+0.90039)-1+\right. \\
& \left.\left.+(0.90039)^{2(13)}\right)\right\}[(1+0.8222) /(1-0.90039)]
\end{aligned}
$$

$$
=0.8675
$$

Connection Capacity $=(26$ bolts $)(2436 \mathrm{lb})(0.8675)=54,944 \mathrm{lb}>49,006 \mathrm{lb} \therefore$ O.K.

Try (24) $3 / 4$ " bolts arranged in (2) rows of twelve each using calculated C_{g} from equation.
Group Action Factor, C_{g}

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{g}}=\left\{\left[(\mathrm{m})\left(1-\mathrm{m}^{2 \mathrm{n}}\right)\right] /\left[(\mathrm{n})\left(\left(1+\mathrm{R}_{\mathrm{EA}} \mathrm{~m}^{\mathrm{n}}\right)(1+\mathrm{m})-1+\mathrm{m}^{2 \mathrm{n}}\right)\right]\right\}\left[\left(1+\mathrm{R}_{\mathrm{EA}}\right) /(1-\mathrm{m})\right] \\
& \mathrm{n}=\text { number of fasteners in a row }=12 \\
& \mathrm{R}_{\mathrm{EA}}=0.8222 \text { (from previous) } \\
& \mathrm{s}=3 " \\
& \gamma=175,370.14 \text { (from previous) } \\
& \mathrm{u}=1.005510 \text { (from previous) } \\
& \mathrm{m}=0.90039 \text { (from previous) } \\
& \mathrm{C}_{\mathrm{g}}=\left\{[(0 . 9 0 0 3 9) (1 - (0 . 9 0 0 3 9) ^ { 2 (1 2) })] \left[(1 2) \left(\left(1+(0.8222)(0.90039)^{12}\right)(1+0.90039)-1+\right.\right.\right. \\
& \quad\left.\left.+(0.90039)^{2(12)}\right)\right\}[(1+0.8222) /(1-0.90039)] \\
&= 0.8858
\end{aligned}
$$

Connection Capacity $=(24$ bolts $)(2436 \mathrm{lb})(0.8858)=51,787 \mathrm{lb}>49,006 \mathrm{lb} \therefore$ O.K.
Try 4-in-diameter shear plates with $3 / 4$ " bolts.
For Southern Pine, the specific gravity $\mathrm{G}=0.55$
Table 12A: Species Group B (for $0.49 \leq \mathrm{G}<0.60$)
The capacity of a 4 -in shear plate with steel side plates, $3 / 4$ " bolt, using species group B, loaded parallel to grain per NDS Table 12.2B:

$$
\mathrm{P}=4320 \mathrm{lb}
$$

Table 12.3: Geometry Factors, C_{Δ}, for Split Ring and Shear Plate Connectors
Edge Distance: Parallel to Grain Loading
Minimum for $\mathrm{C}_{\Delta}=1.0$ is $23 / 4$ "
End Distance: Parallel to Grain Loading, Tension Member
Minimum for $\mathrm{C}_{\Delta}=1.0$ is $7 "$

Spacing: Parallel to Grain Loading
Spacing Parallel to Grain:
Minimum for $\mathrm{C}_{\Delta}=1.0$ is $9^{\prime \prime}$
Spacing Perpendicular to Grain:

$$
\text { Minimum for } \mathrm{C}_{\Delta}=1.0 \text { is } 5^{\prime \prime}
$$

Assuming that all bolt spacing, edge distances, and end distances meet the requirements for $\mathrm{C}_{\Delta}=1.0$
$\mathrm{C}_{\text {st }}=1.11$ (Table 12.2.4, Species Group B)

$$
\begin{aligned}
\mathrm{P}^{\prime} & =(\mathrm{P})\left(\mathrm{C}_{\mathrm{D}}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)\left(\mathrm{C}_{\mathrm{g}}\right)\left(\mathrm{C}_{\Delta}\right)\left(\mathrm{C}_{\mathrm{d}}\right)\left(\mathrm{C}_{\mathrm{st}}\right) \\
& =(4230 \mathrm{lb})(1.0)(0.7)(1.0)\left(\mathrm{C}_{\mathrm{g}}\right)(1.0)(1.0)(1.11) \\
& =(3286.71 \mathrm{lb})\left(\mathrm{C}_{\mathrm{g}}\right)
\end{aligned}
$$

Number of shear plates required is:
$(49,006 \mathrm{lb}) /(3286.71 \mathrm{lb})=14.91=15$ shear plates
Due to excessive number of shear plates and required room for spacing of shear plates, use the (24) $3 / 4$ " bolts for the connection.

Check Minimum End Distance for Steel Plates:
$3 / 4$ " bolts, $1 / 4$ " steel plates (A36)
Assume end distance for steel plates $=1.5 "$
End bolts: $\quad \mathrm{L}_{\mathrm{c}}=1.5^{\prime \prime}-(1 / 2)\left(3 / 4 "+1 / 16^{\prime \prime}\right)=1.094^{\prime \prime}<2 \mathrm{~d}=(2)\left(0.75^{\prime \prime}\right)=1.5^{\prime \prime}$
\therefore Tear-out Controls

$$
\phi r_{n}=\phi 1.2 \mathrm{~F}_{\mathrm{u}} \mathrm{~L}_{\mathrm{c}} \mathrm{t}=(0.75)(1.2)(58 \mathrm{ksi})(1.094>)\left(0.25^{\prime}\right)=14.273 \mathrm{k}
$$

Bolt Shear Strength: $\phi r_{\mathrm{n}}=15.9 \mathrm{k}$ (for single $3 / 4$ " A325N bolts)
Interior Bolts: $\quad L_{c}=3-(3 / 4 "+1 / 16 ")=2.188^{\prime \prime}>2 d=1.5 "$
\therefore Bearing Controls

$$
\phi \mathrm{r}_{\mathrm{n}}=\phi 2.4 \mathrm{dtF}_{\mathrm{u}}=(0.75)(2.4)\left(0.75^{\prime}\right)\left(0.25^{\prime \prime}\right)(58 \mathrm{ksi})=19.575 \mathrm{k}
$$

\therefore Bolt shear strength controls for interior bolts.

$$
\begin{aligned}
& \phi \mathrm{R}_{\mathrm{n}}=(2)(14.273 \mathrm{k})+(22)(15.9 \mathrm{k})=378.346 \mathrm{k} \\
& \mathrm{P}_{\mathrm{u}}=1.2 \mathrm{D}+1.6 \mathrm{~S}=(1.2)(24.616 \mathrm{k}+7.979 \mathrm{k})+(1.6)(18.954 \mathrm{k})=69.440 \mathrm{k} \\
& \mathrm{P}_{\mathrm{u}} \text { for each steel plate }=(69.440 \mathrm{k}) / 2=34.720 \mathrm{k} \\
& \phi \mathrm{R}_{\mathrm{n}}=378.346 \mathrm{k}>\mathrm{P}_{\mathrm{u}}=34.720 \mathrm{k} \therefore \mathbf{O K}
\end{aligned}
$$

Block shear strength of steel plates is OK by inspection.

FINAL CONNECTION:

Use (24) $3 / 4 "$ bolts arranged in two rows of (12) each with $1 / 4 "$ steel side plates.

Bottom Chord Splice Connections

LOAD COMBINATION: $\mathrm{D}+\mathrm{L}_{\mathrm{r}}$ (controls)
Assume bottom chord is spliced at quarter points.
Maximum tension force at splice $=51,315 \mathrm{lb}$
Assume same steel side plates, spacing, and edge distances as used for the bottom chord heel connection.
(24) $3 / 4$ " bolts arranged in (2) rows of twelve each will work (from previous calculations):

Connection Capacity $=(24$ bolts $)(2436 \mathrm{lb})(0.8858)=51,787 \mathrm{lb}>51,315 \mathrm{lb} \therefore$ O.K.
Check Minimum End Distance for Steel Plates:
$3 / 4 "$ bolts, $1 / 4 "$ steel plates (A36)
Assume end distance for steel plates $=1.5$ "
End bolts: $\quad L_{c}=1.5 "-(1 / 2)\left(3 / 4 "+1 / 16^{\prime \prime}\right)=1.094^{\prime \prime}<2 d=(2)\left(0.75^{\prime \prime}\right)=1.5 "$
\therefore Tear-out Controls

$$
\phi \mathrm{r}_{\mathrm{n}}=\phi 1.2 \mathrm{~F}_{\mathrm{u}} \mathrm{~L}_{\mathrm{c}} \mathrm{t}=(0.75)(1.2)(58 \mathrm{ksi})(1.094 ")\left(0.25^{\prime}\right)=14.273 \mathrm{k}
$$

Bolt Shear Strength: $\phi r_{n}=15.9 \mathrm{k}$ (for single $3 / 4$ " A 325 N bolts)
Interior Bolts: $\mathrm{L}_{\mathrm{c}}=3-\left(3 / 4^{\prime \prime}+1 / 16^{\prime \prime}\right)=2.188^{\prime \prime}>2 \mathrm{~d}=1.5$ "
\therefore Bearing Controls

$$
\phi \mathrm{r}_{\mathrm{n}}=\phi 2.4 \mathrm{dtF}_{\mathrm{u}}=(0.75)(2.4)\left(0.75^{\prime}\right)\left(0.25^{\prime}\right)(58 \mathrm{ksi})=19.575 \mathrm{k}
$$

\therefore Bolt shear strength controls for interior bolts.

$$
\begin{aligned}
& \phi \mathrm{R}_{\mathrm{n}}=(2)(14.273 \mathrm{k})+(22)(15.9 \mathrm{k})=378.346 \mathrm{k} \\
& \mathrm{P}_{\mathrm{u}}=1.2 \mathrm{D}+1.6 \mathrm{~S}=(1.2)(25.732 \mathrm{k}+8.428 \mathrm{k})+(1.6)(19.814 \mathrm{k})=72.694 \mathrm{k} \\
& \mathrm{P}_{\mathrm{u}} \text { for each steel plate }=(72.694 \mathrm{k}) / 2=36.347 \mathrm{k} \\
& \phi \mathrm{R}_{\mathrm{n}}=378.346 \mathrm{k}>\mathrm{P}_{\mathrm{u}}=36.347 \mathrm{k} \therefore \text { OK }
\end{aligned}
$$

Block shear strength of steel plates is OK by inspection.

FINAL CONNECTION:

Use (24) $3 / 4$ " bolts arranged in two rows of (12) each with $1 / 4 "$ steel side plates.

Top Chord Member Connections

LOAD COMBINATON: $\mathrm{D}+\mathrm{L}_{\mathrm{r}}$ (controls)

$$
\begin{aligned}
& \mathrm{P}=58,247 \mathrm{lb} \text { (compression) } \\
& \mathrm{C}_{\mathrm{D}}=1.0
\end{aligned}
$$

For $63 / 4$ " thick southern pine glulam member, wit h $1 / 4$ " steel side plates, load applied parallel to grain, the nominal design value " Z " of a $3 / 4$ " bolt in double shear is:

$$
\mathrm{Z}=3460 \mathrm{lb} \text { (Table 11I, p. 90, NDS) }
$$

The allowable bolt design value is:

$$
\begin{aligned}
& Z^{\prime}=(\mathrm{Z})\left(\mathrm{C}_{\mathrm{D}}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)\left(\mathrm{C}_{\mathrm{g}}\right)\left(\mathrm{C}_{\Delta}\right)\left(\mathrm{C}_{\mathrm{eg}}\right)\left(\mathrm{C}_{\mathrm{di}}\right)\left(\mathrm{C}_{\mathrm{tn}}\right) \\
& \mathrm{Z}^{\prime}=(3480 \mathrm{lb})(1.0)(0.7)(1.0)\left(\mathrm{C}_{\mathrm{g}}\right)\left(\mathrm{C}_{\Delta}\right)(1.0)(1.0)(1.0)=(2436 \mathrm{lb})\left(\mathrm{C}_{\mathrm{g}}\right)\left(\mathrm{C}_{\Delta}\right)
\end{aligned}
$$

Assuming that all bolt spacing, edge distances, and end distances meet the requirements for $\mathrm{C}_{\Delta}=1.0$

$$
\mathrm{Z}^{\prime}=(2436 \mathrm{lb})\left(\mathrm{C}_{\mathrm{g}}\right)\left(\mathrm{C}_{\Delta}\right)=(2436 \mathrm{lb})\left(\mathrm{C}_{\mathrm{g}}\right)(1.0)=2436 \mathrm{lb}\left(\mathrm{C}_{\mathrm{g}}\right)
$$

$\#$ of bolts required $=(58,247 \mathrm{lb}) /(2436 \mathrm{lb} /$ bolt $)=23.91$ bolts \therefore try 24 bolts
Try (24) 3/4" bolts arranged in (2) rows of twelve each.

Group Action Factor, Cg

$$
\mathrm{C}_{\mathrm{g}}=\left\{\left[(\mathrm{m})\left(1-\mathrm{m}^{2 \mathrm{n}}\right)\right] /\left[(\mathrm{n})\left(\left(1+\mathrm{R}_{\mathrm{EA}} \mathrm{~m}^{\mathrm{n}}\right)(1+\mathrm{m})-1+\mathrm{m}^{2 \mathrm{n}}\right)\right]\right\}\left[\left(1+\mathrm{R}_{\mathrm{EA}}\right) /(1-\mathrm{m})\right]
$$

$$
\begin{aligned}
& \mathrm{n}=\text { number of fasteners in a row }=12 \\
& R_{E A}=\text { lesser of }\left(E_{s} A_{s}\right) /\left(E_{m} A_{m}\right) \text { or }\left(E_{m} A_{m}\right) /\left(E_{s} A_{s}\right) \\
& \mathrm{E}_{\mathrm{s}}=29,000,000 \mathrm{psi} \\
& \mathrm{~A}_{\mathrm{s}}=(2)\left[\left(1 / 4^{\prime \prime}\right)\left(8^{\prime \prime}\right)\right]=4.0 \mathrm{in}^{2} \\
& \mathrm{E}_{\mathrm{m}}=1,900,000 \mathrm{psi} \\
& \mathrm{~A}_{\mathrm{m}}=83.53 \mathrm{in}^{2} \\
& \left(\mathrm{E}_{\mathrm{s}} \mathrm{~A}_{\mathrm{s}}\right) /\left(\mathrm{E}_{\mathrm{m}} \mathrm{~A}_{\mathrm{m}}\right)=\left[(29,000,000 \mathrm{psi})\left(4.0 \mathrm{in}^{2}\right)\right] /\left[(1,900,000 \mathrm{psi})\left(83.53 \mathrm{in}^{2}\right)\right] \\
& =0.7309 \\
& \left(\mathrm{E}_{\mathrm{m}} \mathrm{~A}_{\mathrm{m}}\right) /\left(\mathrm{E}_{\mathrm{s}} \mathrm{~A}_{\mathrm{s}}\right)=\left[(1,900,000 \mathrm{psi})\left(83.53 \mathrm{in}^{2}\right)\right] /\left[(29,000,000 \mathrm{psi})\left(4.0 \mathrm{in}^{2}\right)\right] \\
& =1.3682 \\
& \therefore \mathrm{R}_{\mathrm{EA}}=0.7309 \\
& \mathrm{~s}=3 \text { " } \\
& \gamma=(270,000)\left(\mathrm{D}^{1.5}\right)=(270,000)(0.75)^{1.5}=175,370.14 \\
& \mathrm{u}=1+(\gamma)(\mathrm{s} / 2)\left[\left(1 /\left(\mathrm{E}_{\mathrm{m}} \mathrm{~A}_{\mathrm{m}}\right)\right)+\left(1 /\left(\mathrm{E}_{\mathrm{s}} \mathrm{~A}_{\mathrm{s}}\right)\right)\right] \\
& =1+(175,370.14)(3 / 2)[(1 /(1,900,000)(83.53))+(1 /(29,000,000)(4.0))] \\
& =1.003925 \\
& \mathrm{~m}=\mathrm{u}-\sqrt{ }\left(\mathrm{u}^{2}-1\right)=1.003925-\sqrt{ }\left(1.003925^{2}-1\right)=0.91524 \\
& \mathrm{C}_{\mathrm{g}}=\left\{\left[(0.91524)\left(1-(0.91524)^{2(12)}\right)\right] /\left[(1 2) \left(\left(1+(0.7309)(0.91524)^{12}\right)(1+0.91524)-1+\right.\right.\right. \\
& \left.\left.+(0.91524)^{2(12)}\right)\right\}[(1+0.7309) /(1-0.91524)] \\
& =0.9034
\end{aligned}
$$

Connection Capacity $=(24$ bolts $)(2436 \mathrm{lb})(0.9034)=52,816 \mathrm{lb}<58,247 \mathrm{lb} \therefore$ N.G.
Try (26) $3 / 4 "$ bolts arranged in (2) rows of thirteen each.
Group Action Factor, C_{g}

$$
\begin{gathered}
\mathrm{C}_{\mathrm{g}}=\left\{\left[(\mathrm{m})\left(1-\mathrm{m}^{2 \mathrm{n}}\right)\right] /\left[(\mathrm{n})\left(\left(1+\mathrm{R}_{\mathrm{EA}} \mathrm{~m}^{\mathrm{n}}\right)(1+\mathrm{m})-1+\mathrm{m}^{2 \mathrm{n}}\right)\right]\right\}\left[\left(1+\mathrm{R}_{\mathrm{EA}}\right) /(1-\mathrm{m})\right] \\
\mathrm{n}=\text { number of fasteners in a row }=13
\end{gathered}
$$

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{EA}}=0.7309 \text { (from previous) } \\
& \mathrm{s}=3 " \\
& \gamma=175,370.14 \text { (from previous) } \\
& \mathrm{u}=1.003925 \text { (from previous) } \\
& \mathrm{m}=0.91524 \text { (from previous) } \\
& \mathrm{C}_{\mathrm{g}}=\left\{[(0 . 9 1 5 2 4) (1 - (0 . 9 1 5 2 4) ^ { 2 (1 3) })] \left[\left[(1 3) \left(\left(1+(0.7309)(0.91524)^{13}\right)(1+0.91524)-1+\right.\right.\right.\right. \\
& \left.\left.\quad+(0.91524)^{2(13)}\right)\right\}[(1+0.7309) /(1-0.91524)] \\
& =0.8876
\end{aligned}
$$

Connection Capacity $=(26$ bolts $)(2436 \mathrm{lb})(0.8876)=56,217 \mathrm{lb}<58,247 \mathrm{lb} \therefore$ N.G.
Try (28) $3 / 4 "$ bolts arranged in (2) rows of fourteen each.
Group Action Factor, C_{g}

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{g}}=\left\{\left[(\mathrm{m})\left(1-\mathrm{m}^{2 \mathrm{n}}\right)\right] /\left[(\mathrm{n})\left(\left(1+\mathrm{R}_{\mathrm{EA}} \mathrm{~m}^{\mathrm{n}}\right)(1+\mathrm{m})-1+\mathrm{m}^{2 \mathrm{n}}\right)\right]\right\}\left[\left(1+\mathrm{R}_{\mathrm{EA}}\right) /(1-\mathrm{m})\right] \\
& \mathrm{n}=\text { number of fasteners in a row }=14 \\
& \mathrm{R}_{\mathrm{EA}}=0.7309 \text { (from previous) } \\
& \mathrm{s}=3 " \\
& \gamma=175,370.14 \text { (from previous) } \\
& \mathrm{u}=1.003925 \text { (from previous) } \\
& \mathrm{m}=0.91524 \text { (from previous) } \\
& \mathrm{C}_{\mathrm{g}}=\left\{[(0 . 9 1 5 2 4) (1 - (0 . 9 1 5 2 4) ^ { 2 (1 4) })] \left[(1 4) \left(\left(1+(0.7309)(0.91524)^{14}\right)(1+0.91524)-1+\right.\right.\right. \\
&\left.\left.\quad+(0.91524)^{2(14)}\right)\right\}[(1+0.7309) /(1-0.91524)]=0.8712
\end{aligned}
$$

Connection Capacity $=(28$ bolts $)(2436 \mathrm{lb})(0.8712)=59,423 \mathrm{lb}>58,247 \mathrm{lb} \therefore$ O.K.

FINAL CONNECTION:

Use (28) $3 / 4 "$ bolts arranged in two rows of (14) each with $1 / 4 "$ steel side plates.

Appendix B - Structural Depth: Lateral System Calculations

Wind Calculations

Method 2 - Analytical Procedure

Building Natural Frequency $=\mathrm{n}_{1}$
For concrete moment-resisting frames: $\mathrm{n}_{1}=43.5 / \mathrm{H}^{0.9}$
$\mathrm{H}=$ building height $=60^{\prime}$
$\mathrm{n}_{1}=(43.5) /\left((60)^{0.9}\right)=43.5 / 39.842=1.092>1 \mathrm{~Hz}$ therefore \therefore Structure is rigid
*Building and Other Structure, Flexible: Slender buildings and other structures that have a fundamental natural frequency less than 1 Hz (p. 21).
$\mathrm{g}_{\mathrm{Q}}=\mathrm{g}_{\mathrm{v}}=3.4$
$z=0.6 \mathrm{~h}=(0.6)\left(60^{\prime}\right)=36^{\prime}>\mathrm{z}_{\text {min }}=15^{\prime}($ Table $6-2$, Exposure $C)$
Use maximum roof height for " h " (most conservative) instead of trying to estimate mean roof height of curved roof.
$I_{z}=c\left[(33 / z)^{1 / 6}\right]=(0.20)\left[(33 / 36)^{1 / 6}\right]=0.1971$ $\mathrm{c}=0.20($ Table $6-2$, Exposure C$)$
$\mathrm{L}_{\mathrm{z}}=1(\mathrm{z} / 33)^{\epsilon}=\left(500^{\prime}\right)(36 / 33)^{0.20}=508.7773$
$1=500^{\prime}($ Table 6-2, Exposure C)
$\epsilon=1 / 5.0=0.20$ (Table 6-2, Exposure C)
$\mathrm{Q}=\sqrt{ }\left[1 /\left(1+0.63\left((\mathrm{~B}+\mathrm{h}) / \mathrm{L}_{\mathrm{z}}\right)^{0.63}\right)\right]$
North/South:

$$
\begin{aligned}
& \mathrm{B}=183^{\prime} \\
& \mathrm{L}=156^{\prime} \\
& \mathrm{Q}_{\mathrm{N} / \mathrm{S}}=\sqrt{ }\left[1 /\left(1+0.63\left(\left(183^{\prime}+36^{\prime}\right) / 508.777^{\prime}\right)^{0.63}\right)\right]=0.9272
\end{aligned}
$$

East/West:

$$
B=156^{\prime}
$$

$$
\mathrm{L}=183^{\prime}
$$

$$
\mathrm{Q}_{\mathrm{E} / \mathrm{W}}=\sqrt{ }\left[1 /\left(1+0.63\left(\left(156^{\prime}+36^{\prime}\right) / 508.777^{\prime}\right)^{0.63}\right)\right]=0.8636
$$

$\mathrm{G}=0.85$ or

$$
\mathrm{G}=0.925\left[\left(1+1.7 \mathrm{~g}_{\mathrm{Q}} \mathrm{I}_{\mathrm{z}} \mathrm{Q}\right) /\left(1+1.7 \mathrm{~g}_{\mathrm{v}} \mathrm{I}_{\mathrm{z}}\right)\right]
$$

North/South:

$$
\begin{aligned}
\mathrm{G}_{\mathrm{N} / \mathrm{S}} & =0.925\left[\left(1+1.7 \mathrm{~g}_{\mathrm{Q}} \mathrm{I}_{\mathrm{z}} \mathrm{Q}_{\mathrm{N} / \mathrm{S}}\right) /\left(1+1.7 \mathrm{~g}_{\mathrm{v}} \mathrm{I}_{\mathrm{z}}\right)\right] \\
& =0.925[(1+[(1.7)(3.4)(36)(0.9272)] /(1+1.7(3.4)(36))]=0.8579848361
\end{aligned}
$$

$$
\therefore \text { use } \mathrm{G}_{\mathrm{N} / \mathrm{S}}=0.8580
$$

East/West:

$$
\begin{aligned}
\mathrm{G}_{\mathrm{E} / \mathrm{W}} & =0.925\left[\left(1+1.7 \mathrm{~g}_{\mathrm{Q}} \mathrm{I}_{\mathrm{z}} \mathrm{Q}_{\mathrm{E} / \mathrm{W}}\right) /\left(1+1.7 \mathrm{~g}_{\mathrm{V}} \mathrm{I}_{\mathrm{z}}\right)\right] \\
& =0.925[(1+[(1.7)(3.4)(36)(0.8636)] /(1+1.7(3.4)(36))]=0.7994
\end{aligned}
$$

\therefore use $\mathrm{G}_{\mathrm{E} / \mathrm{W}}=0.85$
Velocity Pressure:
$\mathrm{V}=90 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. (Figure 6-1)
$\mathrm{K}_{\mathrm{d}}=0.85$ (Table 6-4)
I = 1.15 (Table 6-1, Occupancy Category III)
Exposure Category $=\mathrm{C}$
$\mathrm{K}_{\mathrm{zt}}=1.0($ ASCE $7-05,6.5 .7 .2)$

Level	Height	$\mathbf{K}_{\mathbf{z}}$
1	10.50^{\prime}	0.85
2	24.67^{\prime}	0.937
3	40.00^{\prime}	1.04
4	60.00^{\prime}	1.13

(Values of K_{z} from Table 6-2, Exposure C)
$\mathrm{K}_{\mathrm{h}}=1.13$ (using maximum roof height to be conservative)
$\mathrm{q}_{\mathrm{z}}=0.00256 \mathrm{~K}_{\mathrm{z}} \mathrm{K}_{\mathrm{zt}} \mathrm{K}_{\mathrm{d}} \mathrm{V}^{2} \mathrm{I}$
Level 1: $\mathrm{q}_{\mathrm{z}}=(0.00256)(0.85)(1.0)(0.85)\left(90^{2}\right)(1.15)=17.2290 \mathrm{psf}$
Level 2: $\mathrm{q}_{\mathrm{z}}=(0.00256)(0.937)(1.0)(0.85)\left(90^{2}\right)(1.15)=18.9992 \mathrm{psf}$

Level 3: $\mathrm{q}_{\mathrm{z}}=(0.00256)(1.04)(1.0)(0.85)\left(90^{2}\right)(1.15)=21.0802 \mathrm{psf}$
Level 4: $\mathrm{q}_{\mathrm{z}}=(0.00256)(1.13)(1.0)(0.85)\left(90^{2}\right)(1.15)=22.9045 \mathrm{psf}$

$$
=\mathrm{q}_{\mathrm{h}}=22.9045 \mathrm{psf}
$$

Pressure Coefficients, C_{p}, for the Walls and Roof (Figure 6-6):

Wall Pressure Coefficients, C_{p}
North/South:
Windward Wall: $\mathrm{C}_{\mathrm{p}}=0.8$
Leeward Wall: $\mathrm{C}_{\mathrm{p}}=\mathrm{L} / \mathrm{B}=156^{\prime} / 183^{\prime}=0.852 \therefore \mathrm{C}_{\mathrm{p}}=-0.5$
Side Wall: $\mathrm{C}_{\mathrm{p}}=-0.7$
East/West:
Windward Wall: $\mathrm{C}_{\mathrm{p}}=0.8$
Leeward Wall: $\mathrm{C}_{\mathrm{p}}=\mathrm{L} / \mathrm{B}=183^{\prime} / 156^{\prime}=1.173 \therefore \mathrm{C}_{\mathrm{p}}=-0.4654$
Side Wall: $\mathrm{C}_{\mathrm{p}}=-0.7$
Roof Pressure Coefficients, C_{p}, for use with q_{h}
Since roof slope, θ, for curved roof is less than 10° for most of the roof, use "Normal to ridge for <10 and Parallel to ridge for all θ."

North/South:
$h / L=60^{\prime} / 156^{\prime}=0.3846$
Horizontal Distance from Windward Edge

0 to $\mathrm{h} / 2$
$\mathrm{h} / 2$ to
h to 2 h
$>2 \mathrm{~h}$
\underline{C}_{p}
$-0.9,-0.18$
$-0.9,-0.18$
$-0.5,-0.18$
$-0.3,-0.18$

Use worst case scenario: $C_{p}=-0.9$ for entire roof
East/West:
$\mathrm{h} / \mathrm{L}=60^{\prime} / 183^{\prime}=0.3279$
Same chart (above, for North/South) applies
Use worst case scenario: $C_{p}=-0.9$ for entire roof

Or use "Arched Roofs", Figure 6-8, ASCE 7-05
Rise-to-Span Ratio: $\mathrm{r}=20^{\prime} / 130^{\prime}=0.1538<0.2$
$\therefore \mathrm{C}_{\mathrm{p}}$ for Windward Quarter $=-0.9$
C_{p} for Center Half $=-0.7-\mathrm{r}=-0.7-0.1538=-0.8538$
C_{p} for Leeward Quarter $=-0.5$
Conservatively use $C_{p}=-0.9$ for entire roof
Internal Pressure Coefficients ($G C_{p i}$) (Figure 6-5):
Enclosed Buildings: $\mathrm{GC}_{\mathrm{pi}}=+0.18$

$$
=-0.18
$$

Design Wind Pressures:

Windward Walls: $\mathrm{p}_{\mathrm{z}}=\mathrm{q}_{\mathrm{z}} \mathrm{GC}_{\mathrm{p}}-\mathrm{q}_{\mathrm{i}}\left(\mathrm{GC}_{\mathrm{p}}\right)$
However, internal pressures cancel on MLFRS

$$
\therefore \mathrm{p}_{\mathrm{z}}=\mathrm{q}_{\mathrm{z}} \mathrm{GC}_{\mathrm{p}}
$$

Leeward Walls, Side Walls, and Roofs: $\mathrm{p}_{\mathrm{h}}=\mathrm{q}_{\mathrm{h}} \mathrm{GC}_{\mathrm{p}}-\mathrm{q}_{\mathrm{i}}\left(\mathrm{GC}_{\mathrm{p}}\right)$
However, internal pressures cancel on MLFRS
$\therefore \mathrm{p}_{\mathrm{h}}=\mathrm{q}_{\mathrm{h}} \mathrm{GC}_{\mathrm{p}}$
North/South:
Windward Walls:

$$
\mathrm{p}_{\mathrm{z}}=\mathrm{q}_{\mathrm{z}} \mathrm{GC}_{\mathrm{p}}=\left(\mathrm{q}_{\mathrm{z}}\right)(0.858)(0.8)=0.6864\left(\mathrm{q}_{\mathrm{z}}\right)
$$

(Varies by level, see Table)
Leeward Walls:

$$
\mathrm{p}_{\mathrm{h}}=\mathrm{q}_{\mathrm{h}} \mathrm{GC}_{\mathrm{p}}=(21.080)(0.858)(-0.5)=-9.0433 \mathrm{psf}
$$

Side Walls:

$$
\mathrm{p}_{\mathrm{h}}=\mathrm{q}_{\mathrm{h}} \mathrm{GC}_{\mathrm{p}}=(21.080)(0.858)(-0.7)=-12.6606 \mathrm{psf}
$$

Roof:

$$
\mathrm{p}_{\mathrm{h}}=\mathrm{q}_{\mathrm{h}} \mathrm{GC}_{\mathrm{p}}=(21.080)(0.858)(-0.9)=-16.2779 \mathrm{psf}
$$

East/West:
Windward Walls:

$$
\mathrm{p}_{\mathrm{z}}=\mathrm{q}_{\mathrm{z}} \mathrm{GC}_{\mathrm{p}}=\left(\mathrm{q}_{\mathrm{z}}\right)(0.85)(0.8)=0.68\left(\mathrm{q}_{\mathrm{z}}\right)
$$

(Varies by level, see Table)
Leeward Walls:

$$
\mathrm{p}_{\mathrm{h}}=\mathrm{q}_{\mathrm{h}} \mathrm{GC}_{\mathrm{p}}=(21.080)(0.85)(-0.4654)=-8.3391 \mathrm{psf}
$$

Side Walls:

$$
\mathrm{p}_{\mathrm{h}}=\mathrm{q}_{\mathrm{h}} \mathrm{GC}_{\mathrm{p}}=(21.080)(0.85)(-0.7)=-12.5427 \mathrm{psf}
$$

Roof:

$$
\mathrm{p}_{\mathrm{h}}=\mathrm{q}_{\mathrm{h}} \mathrm{GC}_{\mathrm{p}}=(21.080)(0.85)(-0.9)=-16.1264 \mathrm{psf}
$$

*Forces, base shear, and moments are shown in spreadsheets

Wind Forces for Lateral Force Resisting System:

$\mathrm{W}=$ Wind Load
North/South: "Building 1"
Level 1:

$$
\begin{aligned}
& \mathrm{W}=(11.83 \mathrm{PSF}+9.04 \mathrm{PSF})(742.7109 \mathrm{SF})+(13.04 \mathrm{PSF}+9.04 \mathrm{PSF})(1002.0703 \mathrm{SF})= \\
& =37,626.09 \mathrm{lb}=37.626 \mathrm{kips}
\end{aligned}
$$

Level 2:

$$
\begin{aligned}
& \mathrm{W}=(13.04 \mathrm{PSF}+9.04 \mathrm{PSF})(1002.0703 \mathrm{SF})+(14.47 \mathrm{PSF}+9.04 \mathrm{PSF})(1034.8958 \mathrm{SF})= \\
& =46,456.11 \mathrm{lb}=46.456 \mathrm{kips}
\end{aligned}
$$

Level 3:

$$
\begin{aligned}
& \mathrm{W}=(14.47 \mathrm{PSF}+9.04 \mathrm{PSF})(996.6667 \mathrm{SF})+(15.72 \mathrm{PSF}+9.04 \mathrm{PSF})(1746.6029 \mathrm{SF})= \\
& =66,677.52 \mathrm{lb}=66.678 \mathrm{kips}
\end{aligned}
$$

OR if only looking at Level 2 and Level 3 for wind loads for "Building 1":
Level 2:
$\mathrm{W}=(13.04 \mathrm{PSF}+9.04 \mathrm{PSF})(1744.7813 \mathrm{SF})+(14.47 \mathrm{PSF}+9.04 \mathrm{PSF})(1034.8958 \mathrm{SF})=$

$$
=62,855.17 \mathrm{lb}=62.855 \mathrm{kips}
$$

Level 3:

$$
\begin{aligned}
& \mathrm{W}=(14.47 \mathrm{PSF}+9.04 \mathrm{PSF})(996.6667 \mathrm{SF})+(15.72 \mathrm{PSF}+9.04 \mathrm{PSF})(1746.6029 \mathrm{SF})= \\
& =66,667.52 \mathrm{lb}=66.678 \mathrm{kips}
\end{aligned}
$$

North/South: "Building 4"
Level 2:

$$
\begin{aligned}
& \mathrm{W}=(13.04 \mathrm{PSF}+9.04 \mathrm{PSF})(499.8854 \mathrm{SF})+(14.47 \mathrm{PSF}+9.04 \mathrm{PSF})(135.1042 \mathrm{SF})= \\
& =14,213.77 \mathrm{lb}=14.214 \mathrm{kips}
\end{aligned}
$$

East/West:
Level 1:

$$
\begin{aligned}
& \mathrm{W}=(11.72 \mathrm{PSF}+8.34 \mathrm{PSF})(920.9375 \mathrm{SF})+(12.92 \mathrm{PSF}+8.34 \mathrm{PSF})(1242.5347 \mathrm{SF})= \\
& =44,890.29 \mathrm{lb}=44.890 \mathrm{kips}
\end{aligned}
$$

Level 2:

$$
\begin{aligned}
& \mathrm{W}=(12.92 \mathrm{PSF}+8.34 \mathrm{PSF})(1153.4239 \mathrm{SF})+(14.33 \mathrm{PSF}+8.34 \mathrm{PSF})(1189.5000 \mathrm{SF})= \\
&=51,487.76 \mathrm{lb}=51.488 \mathrm{kips}
\end{aligned}
$$

Level 3:
$\mathrm{W}=(14.33 \mathrm{PSF}+8.34 \mathrm{PSF})(1184.5000 \mathrm{SF})=26.852 \mathrm{kips}$

Seismic Calculations

Equivalent Lateral Force Procedure

$\mathrm{S}_{\mathrm{S}}=0.20$ (Figure 22-1, ASCE 7-05) (Also from www.seismicfactor.com)
$\mathrm{S}_{1}=0.054$ (Figure 22-1, ASCE 7-05) (Also from www.seismicfactor.com)

Occupancy Category III, Site Class C
$\mathrm{F}_{\mathrm{a}}=1.2\left(\right.$ Table 11.4-1) $\left(\mathrm{S}_{\mathrm{S}} \leq 0.25\right.$, Site Class C)
$\mathrm{F}_{\mathrm{v}}=1.7\left(\right.$ Table 11.4-2) $\left(\mathrm{S}_{1} \leq 0.1\right.$, Site Class C)
$\mathrm{S}_{\mathrm{MS}}=\mathrm{F}_{\mathrm{a}} \mathrm{S}_{\mathrm{S}}=(1.2)(0.20)=0.24$ (Eq. 11.4-1)
$\mathrm{S}_{\mathrm{M} 1}=\mathrm{F}_{\mathrm{v}} \mathrm{S}_{1}=(1.7)(0.054)=0.0918$ (Eq. 11.4-2)
$\mathrm{S}_{\mathrm{DS}}=(2 / 3)\left(\mathrm{S}_{\mathrm{MS}}\right)=(2 / 3)(0.24)=0.16($ Eq. 11.4-3 $)$
$\mathrm{S}_{\mathrm{D} 1}=(2 / 3)\left(\mathrm{S}_{\mathrm{M} 1}\right)=(2 / 3)(0.0918)=0.0612($ Eq. $11.4-4)$
Seismic Design Category based on S_{DS} (Table 11.6-1):

$$
\mathrm{S}_{\mathrm{DS}}=0.16<0.167, \text { Occupancy Category III: SDC A }
$$

Seismic Design Category based on $\mathrm{S}_{\mathrm{D} 1}$:

$$
\mathrm{S}_{\mathrm{D} 1}=0.0612<0.067, \text { Occupancy Category III: SDC A }
$$

Use most severe of the two Seismic Design Categories: (same in this case)

Seismic Design Category A

Could use methods of 11.7 "Design Requirements for Seismic Design Category A" (Lateral Forces: $\mathrm{F}_{\mathrm{x}}=0.01 \mathrm{w}_{\mathrm{x}}$) but continue to solve for C_{s} instead.

For Wood Braced Frames:
$\mathrm{R}=4$ (Table 12.2-1) (Light-framed wall systems using flat strap bracing)
$\mathrm{I}=1.25$ (Table 11.5-1) (Occupancy Category III)
$\mathrm{T}_{\mathrm{a}}=\mathrm{C}_{\mathrm{t}} \mathrm{h}_{\mathrm{n}}{ }^{\mathrm{x}}$
$\mathrm{C}_{\mathrm{t}}=0.02$ (Table 12.8-2)
$h_{n}=60^{\prime}$
$\mathrm{x}=0.75$ (Table 12.8-2)
$\mathrm{T}_{\mathrm{a}}=(0.02)\left(60^{\prime}\right)^{0.75}=0.4312$
$\mathrm{T}_{\mathrm{L}}=6$ seconds (Figure 22-15)
$\mathrm{T}=\mathrm{T}_{\mathrm{a}}=0.4312$ (this is allowed per Section 12.8.2, ASCE 7-05)

$$
<\mathrm{C}_{\mathrm{u}} \mathrm{~T}_{\mathrm{a}}=(1.7)(0.4312)=0.7330
$$

$\mathrm{C}_{\mathrm{s}}=$ minimum of

$$
\begin{aligned}
& \mathrm{S}_{\mathrm{DS}} /(\mathrm{R} / \mathrm{I})=0.16 /(4 / 1.25)=0.05 \\
& \mathrm{~S}_{\mathrm{D} 1} /[(\mathrm{T})(\mathrm{R} / \mathrm{I})]=0.0612 /[(0.4312)(4 / 1.25)]=0.044353
\end{aligned}
$$

$C_{s}=0.044353$

For Concrete Moment Frames:
$\mathrm{R}=3$ (Table 12.2-1) (Ordinary reinforced concrete moment frames)
$\mathrm{I}=1.25$ (Table 11.5-1) (Occupancy Category III)
$\mathrm{T}_{\mathrm{a}}=\mathrm{C}_{\mathrm{t}} \mathrm{h}_{\mathrm{n}}{ }^{\mathrm{x}}$
$\mathrm{C}_{\mathrm{t}}=0.016$ (Table 12.8-2)
$h_{n}=60^{\prime}$
$\mathrm{x}=0.9($ Table 12.8-2)
$\mathrm{T}_{\mathrm{a}}=(0.016)\left(60^{\prime}\right)^{0.9}=0.6375$
$\mathrm{T}_{\mathrm{L}}=6$ seconds (Figure 22-15)
$\mathrm{T}=\mathrm{T}_{\mathrm{a}}=0.4312$ (this is allowed per Section 12.8.2, ASCE 7-05)

$$
<\mathrm{C}_{\mathrm{u}} \mathrm{~T}_{\mathrm{a}}=(1.7)(0.6375)=1.0837
$$

$\mathrm{C}_{\mathrm{s}}=$ minimum of

$$
\begin{aligned}
& \mathrm{S}_{\mathrm{DS}} /(\mathrm{R} / \mathrm{I})=0.16 /(3 / 1.25)=0.066667 \\
& \mathrm{~S}_{\mathrm{D} 1} /[(\mathrm{T})(\mathrm{R} / \mathrm{I})]=0.0612 /[(0.6375)(3 / 1.25)]=0.040002
\end{aligned}
$$

$C_{s}=0.040002$

Use $\mathbf{C}_{\mathrm{s}}=\mathbf{0 . 0 4 4 3 5 3}$ for entire building (worst case)
$\mathrm{V}=\mathrm{C}_{\mathrm{s}} \mathrm{W}$ (see spreadsheets for weights of building components, seismic forces, and story shears)

Stiffness Values

The stiffness of each frame at each applicable level was determined by applying a 1 kip load to the frame at that particular level and determining the displacement of the frame at that level. SAP was used to determine the displacements. The stiffness is equal to the 1 kip load divided by the displacement.

$$
\mathrm{k}=\mathrm{P} / \Delta
$$

Stiffness Values (k-values) - North/South Direction				
	Level	P (kips)	Deflection (in.)	k = P/Defl. (kip/in)
Braced Frame - Column Line 1	1	1	0.010448	95.712
Braced Frame - Column Line 1	2	1	0.032685	30.595
Braced Frame - Column Line 1	3	1	0.077295	12.937
Moment Frame - Column Line 1.8	1	1	0.002836	352.609
Moment Frame - Column Line 2	2	1	0.006298	158.781
Moment Frame - Column Line 2	3	1	0.014274	70.057
Moment Frame - Column Line 4	2	1	0.046756	21.388

Table - Stiffness Values for Wood Braced Frames, Concrete Moment Frames, and Steel Moment Frame - North/South Direction

Stiffness Values (k-values) - East/West Direction				
	Level	P (kips)	Deflection (in.)	k = P/Defl. (kip/in)
Concrete Moment Frame	1	1	0.014789	67.618
Concrete Moment Frame	2	1	0.017769	56.278
Concrete Moment Frame	3	1	0.108563	9.211
Wood Braced Frame	1	1	0.002595	385.356
Wood Braced Frame	2	1	0.007476	133.761
Wood Braced Frame	3	1	0.015516	64.450

Table \qquad - Stiffness Values for Concrete Moment Frames - East/West Direction

Center of Mass

The center of mass at each level was determined by hand. Tributary areas were used for building elements that did not exactly line up with a level or that crossed over several levels. The reference point used for the center of mass was the Southwest corner of the façade of the building. Center of mass values for each level are found in Tables \qquad -
\qquad below. Calculations for the center of mass at each level are found in Appendix
\qquad .

Center of Mass $x=\left\{\sum[(\right.$ weight $\left.)(x)]\right\} / \sum$ weight
Center of Mass $\mathrm{y}=\left\{\sum[(\right.$ weight $\left.)(\mathrm{y})]\right\} / \sum$ weight

Center of Mass - Entire Building - Level 1			
	Weight (kips)	Center of Mass	
		$\mathbf{x}(\mathbf{f t)}$	$\mathbf{y}(\mathbf{f t})$
Building 1 - Level 1	496.085	31.6634	80.7836
Building 2 - Level 1	404.340	112.6943	78.0000
Building 3 - Level 1	1089.540	125.7531	78.2569
TOTAL=			1989.965

Table \qquad - Center of Mass of Entire Building at Level 1

Center of Mass - Entire Building - Level 2							
	Weight (kips)	Center of Mass					
		$\mathbf{x}(\mathbf{f t})$	$\mathbf{y}(\mathbf{f t})$				
Building 1 - Level 2	740.563	55.8277	80.1876				
Building 2 - Level 2	329.779	124.6779	75.2708				
Building 4 - Level 2	760.650	151.5494	75.1941				
TOTAL=					1830.992	107.9940	77.2276

Table \qquad - Center of Mass of Entire Building at Level 2

Center of Mass - Entire Building - Level 3			
	Weight (kips)	Center of Mass	
		$\mathbf{x}(\mathrm{ft})$	$\mathbf{y}(\mathrm{ft})$
Building 1 - Level 3	593.006	52.7936	78.0000
TOTAL= $=$		593.006	52.7936

Table \qquad - Center of Mass of Entire Building at Level 3

Center of Rigidity

The center of rigidity was calculated for each level using the stiffness values of the frames that contribute to that level. The reference point used for the center of rigidity was the Southwest corner of the façade of the building (the same as that used for the center of mass). The center of rigidity at each level for the North/South direction is found in Tables \qquad , and the center of rigidity for the East/West direction is found in Tables \qquad below. Table \qquad shows the overall center of rigidity at each level.

Center of Rigidity $(\mathrm{x})=\left[\operatorname{sum}\left(\mathrm{k}_{\mathrm{iy}} \mathrm{x}_{\mathrm{i}}\right)\right] /\left[\operatorname{sum}\left(\mathrm{k}_{\mathrm{i}}\right)\right]$

Center of Rigidity - North/South Direction - Entire Building - Level 1					
	$\mathbf{k}_{\mathbf{i y}}$	$\mathbf{x}_{\mathbf{i}}(\mathbf{f t})$	Quantity	$\left.\mathbf{(k}_{\mathbf{i} \mathbf{}} \mathbf{x}_{\mathbf{i}}\right)$	Center of Rigidity
	$\mathbf{x}(\mathrm{ft})$				
Braced Frames - Column Line 1	95.712	1.1510	10	1101.6850	
Moment Frame - Column Line 1.8	352.609	111.9010	1	39457.3144	
TOTAL $=$	1309.729	TOTAL $=$			

Table \qquad - Center of Rigidity for North/South Direction - Level 1

Center of Rigidity - North/South Direction - Entire Building - Level 2					
	k_{iy}	$\mathrm{x}_{\mathrm{i}}(\mathrm{ft})$	Quantity	($\mathrm{k}_{\text {iy }} \mathrm{x}_{\mathrm{i}}$)	Center of Rigidity
					X (ft)
Braced Frames - Column Line 1	30.595	1.1510	10	352.1612	
Moment Frame - Column Line 2	158.781	130.3177	1	20691.9760	
Moment Frame - Column Line 4	21.388	171.6510	1	3671.2089	
TOTAL=	486.119		TOTAL=	24715.3461	50.8422

Table \qquad - Center of Rigidity for North/South Direction - Level 2

Center of Rigidity - North/South Direction - Entire Building - Level 3					
	$\mathbf{k}_{\mathbf{i y}}$	$\mathbf{x}_{\mathbf{i}}(\mathbf{f t})$	Quantity	$\left.\mathbf{(k}_{\mathbf{i y}} \mathbf{x}_{\mathbf{i}}\right)$	Center of Rigidity
			10	148.9103	
Braced Frames - Column Line 1	12.937	1.1510	1	9129.6677	
Moment Frame - Column Line 2	70.057	130.3177	1	9278.5780	46.5262
TOTAL $=$	199.427	TOTAL $=$			

Table \qquad - Center of Rigidity for North/South Direction - Level 3

Center of Rigidity $(\mathrm{y})=\left[\operatorname{sum}\left(\mathrm{k}_{\mathrm{ix}} \mathrm{y}_{\mathrm{i}}\right)\right] /\left[\operatorname{sum}\left(\mathrm{k}_{\mathrm{ix}}\right)\right]$

Center of Rigidity - East/West Direction - Entire Building - Level 1					
	$\mathrm{k}_{\text {ix }}$	yi (ft)	Quantity	($\mathrm{k}_{\mathrm{ixyj}}$)	$\begin{gathered} \hline \text { Center of Rigidity } \\ \mathrm{y}(\mathrm{ft}) \end{gathered}$
Concrete Moment Frame	67.618	18.0000	1	1217.1208	
Concrete Moment Frame	67.618	48.0000	1	3245.6556	
Concrete Moment Frame	67.618	78.0000	1	5274.1903	
Concrete Moment Frame	67.618	108.0000	1	7302.7250	
Concrete Moment Frame	67.618	138.0000	1	9331.2597	
Wood Braced Frame	385.357	4.2500	2	3275.5303	
Wood Braced Frame	385.357	151.7500	2	116955.6978	
TOTAL=	1879.515		TOTAL=	146602.1794	78.0000

Table \qquad - Center of Rigidity for East/Direction Direction - Level 1

Center of Rigidity - East/West Direction - Entire Building - Level 2					
	$\mathrm{k}_{\text {ix }}$	yi (ft)	Quantity	($\mathrm{k}_{\mathrm{ixyj}}$)	$\begin{gathered} \hline \text { Center of Rigidity } \\ \mathrm{y}(\mathrm{ft}) \end{gathered}$
Concrete Moment Frame	56.278	18.0000	1	1013.0002	
Concrete Moment Frame	56.278	48.0000	1	2701.3338	
Concrete Moment Frame	56.278	78.0000	1	4389.6674	
Concrete Moment Frame	56.278	108.0000	1	6078.0010	
Concrete Moment Frame	56.278	138.0000	1	7766.3346	
Wood Braced Frame	133.761	4.2500	2	1136.9719	
Wood Braced Frame	133.761	151.7500	2	40596.5849	
TOTAL=	816.435		TOTAL=	63681.8938	78.0000

Table \qquad - Center of Rigidity for East/West Direction - Level 2

Center of Rigidity - East/West Direction - Entire Building - Level 3					
	$\mathrm{k}_{\text {ix }}$	yi (ft)	Quantity	($\mathrm{k}_{\mathrm{ixyj}}$)	$\begin{gathered} \hline \text { Center of Rigidity } \\ \hline \mathrm{y}(\mathrm{ft}) \end{gathered}$
Concrete Moment Frame	9.211	18.0000	1	165.8023	
Concrete Moment Frame	9.211	48.0000	1	442.1396	
Concrete Moment Frame	9.211	78.0000	1	718.4768	
Concrete Moment Frame	9.211	108.0000	1	994.8141	
Concrete Moment Frame	9.211	138.0000	1	1271.1513	
Wood Braced Frame	64.450	4.2500	2	547.8216	
Wood Braced Frame	64.450	151.7500	2	19560.4536	
TOTAL=	303.855		TOTAL=	23700.6593	78.0000

Table \qquad - Center of Rigidity for East/West Direction - Level 3

Center of Rigidity - Entire Building		
Level	Center of Rigidity	
	$\mathbf{x} \mathbf{(f t)}$	$\mathbf{y} \mathbf{(f t)}$
1	30.9675	78.0000
2	50.8422	78.0000
3	46.5262	78.0000

Table \qquad - Center of Rigidity for Entire Building at Each Level

Direct Shear

The direct shear values for each lateral force resisting frame and each level were calculated by hand and are found in Tables \qquad - \qquad below. Calculations for direct shear are found in Appendix \qquad . Direct shear values in the North/South direction for "Building 1" were based on tributary area since the wood roof diaphragm is considered to be a flexible diaphragm.

$$
\text { Direct Load: } \mathrm{F}_{\mathrm{iy}}=\left[\left(\mathrm{k}_{\mathrm{iy}} / \sum \mathrm{k}_{\mathrm{iy}}\right)\right]\left(\mathrm{P}_{\mathrm{y}}\right)
$$

Due to Seismic Loads:
$1.2 \mathrm{D}+1.0 \mathrm{E}+\mathrm{L}+0.2 \mathrm{~S}$
North/South Direction:

Direct Shear - North/South Direction - "Building 1"							
			Distributed Force (kips)				
Load Combination $=$ $1.2 \mathrm{D}+1.0 \mathrm{E}+\mathrm{L}+0.2 \mathrm{~S}$	Force (k)	Factored Force (k)	Braced Frame - Column Line 1 - Level 1	Braced Frame Column Line 1 Level 2	Braced Frame Column Line 1 Level 3	Moment Frame Column Line 2 Level 2	Moment Frame Column Line 2 Level 3
Level 1	8.96	8.96	0.90				
Level 2	31.41	31.41		1.57		15.71	
Level 3	40.79	40.79			2.04		20.40

Table__ - Direct Shear Values due to Seismic Loads for "Building 1" (North/South)
*Assuming flexible diaphragm for "Building 1 "
*Based on 10 braced frames at Column Line 1

Direct Shear - North/South Direction - "Building 2"				
Load Combination = 1.2D+1.0E+L+0.2S	Force (k)	Factored Force (k)	Moment Frame - Column Line 1.8-Level 1	Moment Frame - Column Line 2 - Level 2
Level 1	11.17	11.17	11.17	
Level 2	21.39	21.39		21.39

Table \qquad - Direct Shear Values due to Seismic Loads for "Building 2" (North/South)

Direct Shear - North/South Direction - "Building 3"			
Load Combination = 1.2D+1.0E+L+0.2S	Force $\mathbf{(k)}$	Factored Force (k)	Distributed Force (kips)
Levoment Frame -			
Column Line 1.8- Level			
1	48.32	48.32	48.32

Table \qquad - Direct Shear Values due to Seismic Loads for "Building 3" (North/South)

Direct Shear - North/South Direction - "Building 4"				
Load Combination = 1.2D+1.0E+L+0.2S	Force (k)	Factored Force (k)	Moment Frame - Column Line 2 - Level 2	Moment Frame - Column Line 4- Level 2
Level 2	33.74	33.74	29.73	4.01

Table \qquad - Direct Shear Values due to Seismic Loads for "Building 4" (North/South)

Total Direct Shear - North/South Direction							
	Distributed Force (kips)						
Load Combination = 1.2D+1.0E+L+0.2S	Braced Frame Column Line 1 Level 1	Braced Frame Column Line 1 Level 2	Braced Frame Column Line 1 Level 3	Moment Frame Column Line 1.8 Level 1	Moment Frame Column Line 2 Level 2	Moment Frame Column Line 2 Level 3	Moment Frame Column Line 4 Level 2
Level 1	0.90			59.49			
Level 2		1.57			66.83		4.01
Level 3			2.04			20.40	

Table \qquad - Total Direct Shear Values due to Seismic Loads (North/South)

East/West Direction:

| Total Direct Shear - East/West Direction | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Load Combination
 1.2D+1.0E+L+0.2S | Force (k) | Factored | | | |
| | Force (k) | Inside Concrete
 Moment Frame (1
 of 3) | Outer Concrete
 Moment Frame (1
 of 2) | Wood Braced Frame (1
 of 4) | |
| Level 1 | 68.45 | 68.45 | 14.04 | 12.64 | 0.26 |
| Level 2 | 86.54 | 86.54 | 17.75 | 14.81 | 0.92 |
| Level 3 | 40.79 | 40.79 | 8.37 | 5.46 | 1.19 |

Table \qquad - Total Direct Shear Values due to Seismic Loads (East/West)

Due to Wind Loads:
$1.2 \mathrm{D}+1.6 \mathrm{~W}+\mathrm{L}+0.5(\mathrm{Lr}$ or S or R$)$

North/South Direction:

Direct Shear - North/South Direction - "Building 1"							
Load Combination $=$$\begin{aligned} & \text { 1.2D+1.6W+L+0.5 } \\ & \text { (Lr or } S \text { or } R \text {) } \end{aligned}$	Force (k)	Factored Force (k)	Distributed Force (kips)				
			Braced Frame Column Line 1 Level 1	Braced Frame Column Line 1 Level 2	Braced Frame Column Line 1 Level 3	Moment Frame Column Line 2 Level 2	Moment Frame Column Line 2 Level 3
Level 1	37.63	60.21	6.02				
Level 2	46.46	74.34		3.72		37.17	
Level 3	66.68	106.69			5.33		53.34

Table \qquad - Direct Shear Values due to Wind Loads for "Building 1" (North/South)

Direct Shear - North/South Direction - "Building 4"				
Load Combination =$\begin{gathered} \text { 1.2D+1.6W+L+0.5 } \\ \text { (Lr or S or R) } \end{gathered}$			Distributed	Force (kips)
	Force (k)	Factored Force (k)	Moment Frame Column Line 2 Level 2	Moment Frame Column Line 4 Level 2
Level 2	14.10	22.56	19.88	2.68

Table \qquad - Direct Shear Values due to Wind Loads for "Building 4" (North/South)

Total Direct Shear - North/South Direction						
	Distributed Force (kips)					
1.2D+1.6W+L+0.5 (Lr or S or R)	Braced Frame Column Line 1 Level 1	Braced Frame Column Line 1 Level 2	Braced Frame Column Line 1 Level 3	Moment Frame Column Line 2 Level 2	Moment Frame Column Line 2 Level 3	Moment Frame Column Line 4 Level 2
Level 1	6.02					
Level 2		3.72		57.05		2.68
Level 3			5.33		53.34	

Table \qquad Total Direct Shear Values due to Wind Loads (North/South)

East/West Direction:

Total Direct Shear - East/West Direction					
Load Combination = $\mathbf{1 . 2 D + 1 . 6 W + L + 0 . 5 (L r ~}$ or S or R)	Force $\mathbf{(k)}$	Factored Force (k)	Inside Concrete Moment Frame (1 of 3)	Outer Concrete Moment Frame (1 of 2)	Wood Braced Frame (1 of 4)
Level 1		71.82	14.73	9.61	2.10
Level 2	51.49	82.38	16.90	11.02	2.41
Level 3	26.85	42.96	8.81	5.75	1.26

Table \qquad - Total Direct Shear Values due to Wind Loads (East/West)

Direct Shear Calculations:

Based on Seismic Load:

"Building 1 " seismic loads are distributed to the lateral force resisting frames based on tributary area. "Building 4 " seismic loads are distributed to the lateral force resisting frames based on the relative stiffness of each frame.

Direct Shear - North/South Direction - "Building 4"
Moment Frame - Column Line 2 - Level 2

$$
F=[158.781 /(158.781+21.388)][33.74 \mathrm{k}]=29.7347 \mathrm{k}
$$

Moment Frame - Column Line 4 - Level 2

$$
F=[21.388 /(158.781+21.388)][33.74 \mathrm{k}]=4.0053 \mathrm{k}
$$

Direct Shear - East/West Direction
Tributary Width of Moment Frames:
Inside Frames: 32.0 '

Outer Frames: $16.0^{\prime}+4.875^{\prime}=20.875^{\prime}$

Tributary Width of Wood Braced Frames $(2$ of 4$)=4.875+4.25^{\prime}=9.125^{\prime}$

Total Width = 156'

For Level 1: Assume that the 8.96 k load from "Building 1 " is distributed to all lateral force resisting frames in the East/West direction. Assume that the 11.17 k load from "Building 2 " and the 48.32 k from "Building 3 " are taken only by the concrete moment frames.

Inside Moment Frame - Level 1

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{BLDG} 1}=[32.0 / 156][8.96 \mathrm{k}]=1.8379 \mathrm{k} \\
& \mathrm{~F}_{\mathrm{BLDG} 2,3}=[32.0 / 156][11.17 \mathrm{k}+48.32 \mathrm{k}]=12.2031 \mathrm{k} \\
& \mathrm{~F}_{\text {TOTAL }}=1.8379 \mathrm{k}+12.2031 \mathrm{k}=\mathbf{1 4 . 0 4 1 0} \mathbf{~ k}
\end{aligned}
$$

Outer Moment Frame - Level 1

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{BLDG} 1}=[20.875 / 156][8.96 \mathrm{k}]=1.1990 \mathrm{k} \\
& \mathrm{~F}_{\text {BLDG } 2,3}=[(11.17 \mathrm{k}+48.32 \mathrm{k})-(3)(12.2031 \mathrm{k})] / 2=11.4404 \mathrm{k} \\
& \mathrm{~F}_{\text {TOTAL }}=1.1990 \mathrm{k}+11.4404 \mathrm{k}=\mathbf{1 2 . 6 3 9 4} \mathbf{k}
\end{aligned}
$$

Wood Braced Frame (2 of 4) - Level 1

$$
F=[9.125 / 156][8.96 \mathrm{k}]=0.5241 \mathrm{k}
$$

Each Wood Braced Frame: $F=(0.5241 \mathrm{k}) / 2=\mathbf{0 . 2 6 2 1} \mathbf{k}$
For Level 2: Assume that the 31.41 k load from "Building 1" is distributed to all lateral force resisting frames in the East/West direction. Assume that the 21.39 k load from "Building 2 " and the 33.74 k load from "Building 4 " are taken only by the concrete moment frames.

Inside Moment Frame - Level 2

$$
\begin{aligned}
& \mathrm{F}_{\text {BLDG } 1}=[32.0 / 156][31.41 \mathrm{k}]=6.4431 \mathrm{k} \\
& \mathrm{~F}_{\text {BLDG } 2,4}=[32.0 / 156][21.39 \mathrm{k}+33.74 \mathrm{k}]=11.3087 \mathrm{k} \\
& \mathrm{~F}_{\text {TOTAL }}=6.4431 \mathrm{k}+11.3087 \mathrm{k}=\mathbf{1 7 . 7 5 1 8} \mathbf{~ k}
\end{aligned}
$$

Outer Moment Frame - Level 2

$$
\begin{aligned}
& \mathrm{F}_{\text {BLDG } 1}=[20.875 / 156][31.41 \mathrm{k}]=4.2031 \mathrm{k} \\
& \mathrm{~F}_{\text {BLDG } 2,4}=[(21.39 \mathrm{k}+33.74 \mathrm{k})-(3)(11.3087 \mathrm{k})] / 2=10.6020 \mathrm{k}
\end{aligned}
$$

$$
\mathrm{F}_{\text {TOTAL }}=4.2031 \mathrm{k}+10.6020 \mathrm{k}=\mathbf{1 4 . 8 0 5 1} \mathbf{~ k}
$$

Wood Braced Frame (2 of 4) - Level 1

$$
\mathrm{F}=[9.125 / 156][31.41 \mathrm{k}]=1.8373 \mathrm{k}
$$

Each Wood Braced Frame: $F=(1.8373$ k $) / 2=\mathbf{0 . 9 1 8 6} \mathbf{k}$

For Level 3: Assume that the 40.79 k load from "Building 1" is distributed to all lateral force resisting frames in the East/West direction.

Inside Moment Frame - Level 3

$$
\mathrm{F}_{\mathrm{BLDG} 1}=[32.0 / 156][40.79 \mathrm{k}]=\mathbf{8 . 3 6 7 2} \mathbf{k}
$$

Outer Moment Frame - Level 3

$$
\mathrm{F}_{\mathrm{BLDG} 1}=[20.875 / 156][40.79 \mathrm{k}]=5.4583 \mathbf{k}
$$

Wood Braced Frame (2 of 4) - Level 1

$$
\mathrm{F}=[9.125 / 156][40.79 \mathrm{k}]=2.3860 \mathrm{k}
$$

Each Wood Braced Frame: $F=(2.3860 \mathrm{k}) / 2=\mathbf{1 . 1 9 3 0} \mathbf{k}$

Based on Wind Load:

Direct Shear - North/South Direction - "Building 4"(Factored Load)
Moment Frame - Column Line 2 - Level 2

$$
F=[158.781 /(158.781+21.388)][22.56 \mathrm{k}]=\mathbf{1 9 . 8 8 1 9} \mathbf{k}
$$

Moment Frame - Column Line 4 - Level 2

$$
F=[21.388 /(158.781+21.388)][22.56 \mathrm{k}]=2.6781 \mathbf{k}
$$

Direct Shear - North/South Direction - "Building 4"(Unfactored Load)
Moment Frame - Column Line 2 - Level 2

$$
\mathrm{F}=[158.781 /(158.781+21.388)][14.10 \mathrm{k}]=\mathbf{1 2 . 4 2 6 2} \mathbf{k}
$$

Moment Frame - Column Line 4 - Level 2

$$
F=[21.388 /(158.781+21.388)][14.10 \mathrm{k}]=\mathbf{1 . 6 7 3 8} \mathbf{k}
$$

Direct Shear - East/West Direction (Factored Load)

Tributary Width of Moment Frames:

Inside Frames: $32 .{ }^{\prime}$
Outer Frames: $16.0^{\prime}+4.875^{\prime}=20.875^{\prime}$

Tributary Width of Wood Braced Frames $(2$ of 4$)=4.875+4.25^{\prime}=9.125^{\prime}$

Total Width $=156^{\prime}$

Inside Moment Frame - Level 1

$$
\mathrm{F}=[32.0 / 156][71.82 \mathrm{k}]=14.7323 \mathbf{k}
$$

Outer Moment Frame - Level 1

$$
\mathrm{F}=[20.875 / 156][71.82 \mathrm{k}]=\mathbf{9 . 6 1 0 5} \mathbf{k}
$$

Wood Braced Frame (2 of 4) - Level 1

$$
\mathrm{F}=[9.125 / 156][71.82 \mathrm{k}]=4.2010 \mathrm{k}
$$

Each Wood Braced Frame: $F=(4.2010 \mathrm{k}) / 2=2.1005 \mathbf{k}$

Inside Moment Frame - Level 2

$$
\mathrm{F}=[32.0 / 156][82.38 \mathrm{k}]=\mathbf{1 6 . 8 9 8 5} \mathbf{k}
$$

Outer Moment Frame - Level 2

$$
\mathrm{F}=[20.875 / 156][82.38 \mathrm{k}]=\mathbf{1 1 . 0 2 3 6} \mathbf{k}
$$

Wood Braced Frame (2 of 4) - Level 2

$$
\mathrm{F}=[9.125 / 156][82.38 \mathrm{k}]=4.8187 \mathrm{k}
$$

Each Wood Braced Frame: F $=(4.8187 \mathrm{k}) / 2=2.4094 \mathbf{k}$

Inside Moment Frame - Level 3

$$
\mathrm{F}=[32.0 / 156][42.96 \mathrm{k}]=\mathbf{8 . 8 1 2 3} \mathbf{k}
$$

Outer Moment Frame - Level 3

$$
\mathrm{F}=[20.875 / 156][42.96 \mathrm{k}]=5.7487 \mathrm{k}
$$

Wood Braced Frame (2 of 4) - Level 3

$$
\mathrm{F}=[9.125 / 156][42.96 \mathrm{k}]=2.5129 \mathrm{k}
$$

Each Wood Braced Frame: F $=(2.5129 \mathrm{k}) / 2=\mathbf{1 . 2 5 6 4} \mathbf{k}$

Torsional Shear

The torsional shear values for each lateral force resisting frame and each level were calculated by hand and are found in Tables \qquad - \qquad below. Rather than breaking up the building into the four different "buildings" as was done when determining the direct shear values, torsional shear values due to loads in the North/South direction were calculated looking at the entire building at each level. Torsional shear values due to wind loads were determined for both Wind Load Cases 1 and 2. Wind Load Case 1 just looks at the total wind load in one direction. Wind Load Case 2 used (0.75)(wind load) but adds in an eccentricity of (0.15)(building width). Wind Load Case 1 was found to control over Wind Load Case 2. Torsional shear due to loads in the East/West direction were neglected since the center of mass and center of rigidity are located at the same point or within one foot of each other in that direction. Plus, the five concrete frames in the East/West direction are evenly spaced at $32^{\prime}-0$ " apart and are centered on the center of the building in the East/West direction. Therefore, it was assumed that torsional shear values in this direction would be negligible. Torsional shear due to eccentricities from Wind Load Case 2 was also neglected and assumed not to control for the East/West direction. Calculations for torsional shear are found in Appendix \qquad .

$$
\text { Torsional Shear: } \mathrm{F}_{\mathrm{it}}=\left[\left(\mathrm{k}_{\mathrm{i}}\right)\left(\mathrm{d}_{\mathrm{i}}\right)\left(\mathrm{P}_{\mathrm{y}}\right)\left(\mathrm{e}_{\mathrm{x}}\right)\right] /\left[\sum\left(\left(\mathrm{k}_{\mathrm{j}}\right)\left(\mathrm{d}_{\mathrm{j}}\right)^{2}\right)\right]
$$

Due to Seismic Loads:
$1.2 \mathrm{D}+1.0 \mathrm{E}+\mathrm{L}+0.2 \mathrm{~S}$

Torsional Shear - North/South Direction - Level 1							
			Distributed Force (kips)				
Load Combination $=$ 1.2D+1.0E+L+0.2S	Force (k)	Factored Force (k)	Braced Frame Column Line 1 Level 1	Moment Frame Column Line 1.8 Level 1	Inside Concrete Moment Frame (1 of 3)	Outer Concrete Moment Frame (1 of 2)	Wood Braced Frame (1 of 4)
Level 1	68.45	68.45	1.10	10.96	0.83	1.66	10.92

Table___ Torsional Shear Values due to Seismic Loads for Level 1 (North/South)

Torsional Shear - North/South Direction - Level 2								
			Distributed Force (kips)					
Load Combination = $1.2 \mathrm{D}+1.0 \mathrm{E}+\mathrm{L}+0.2 \mathrm{~S}$	Force (k)	Factored Force (k)	Braced Frame Column Line 1 Level 2	Moment Frame Column Line 2 Level 2	Moment Frame Column Line 4 Level 2	Inside Concrete Moment Frame (1 of 3)	Outer Concrete Moment Frame (1 of 2)	Wood Braced Frame (1 of 4)
Level 2	86.54	86.54	1.35	11.23	2.30	1.60	3.21	8.78

Table \qquad Torsional Shear Values due to Seismic Loads for Level 2 (North/South)

Torsional Shear - North/South Direction - Level 3							
			Distributed Force (kips)				
Load Combination $=$ 1.2D+1.0E+L+0.2S	Force (k)	Factored Force (k)	Braced Frame Column Line 1 Level 3	Moment Frame Column Line 2 Level 3	Inside Concrete Moment Frame (1 of 3)	Outer Concrete Moment Frame (1 of 2)	Wood Braced Frame (1 of 4)
Level 3	40.79	40.79	0.07	0.67	0.03	0.07	0.54

Table \qquad - Torsional Shear Values due to Seismic Loads for Level 3 (North/South)

Due to Wind Loads:

$1.2 \mathrm{D}+1.6 \mathrm{~W}+\mathrm{L}+0.5\left(\mathrm{~L}_{\mathrm{r}}\right.$ or S or R$)$

Load Case 1:

Torsional Shear - North/South Direction - Level 1							
Load Combination $=$$\begin{aligned} & 1.2 \mathrm{D}+1.6 \mathrm{~W}+\mathrm{L}+0.5(\mathrm{Lr} \\ & \text { or } \mathrm{S} \text { or } \mathrm{R}) \end{aligned}$	Force (k)	Factored Force (k)	Distributed Force (kips)				
			Braced Frame Column Line 1 Level 1	Moment Frame Column Line 1.8 Level 1	Inside Concrete Moment Frame (1 of 3)	Outer Concrete Moment Frame (1 of 2)	Wood Braced Frame (1 of 4)
Level 1	37.63	60.21	0.49	4.94	0.37	0.75	4.92

Table \qquad - Torsional Shear Values due to Wind Load Case 1 for Level 1 (North/South)

Torsional Shear - North/South Direction - Level 2								
			Distributed Force (kips)					
$\begin{aligned} & 1.2 \mathrm{D}+1.6 \mathrm{~W}+\mathrm{L}+0.5(\mathrm{Lr} \\ & \quad \text { or } \mathrm{S} \text { or } \mathrm{R}) \end{aligned}$	Force (k)	Factored Force (k)	Braced Frame Column Line 1 Level 2	Moment Frame Column Line 2 Level 2	Moment Frame Column Line 4 Level 2	Inside Concrete Moment Frame (1 of 3)	Outer Concrete Moment Frame (1 of 2)	Wood Braced Frame (1 of 4)
Level	60.67	97.07	0.95	7.85	1.61	1.12	2.24	6.1

Table \qquad - Torsional Shear Values due to Wind Load Case 1 for Level 2 (North/South)

Torsional Shear - North/South Direction - Level 3							
Load Combination = 1.2D+1.6W+L+0.5(Lr or S or R)	Force (k)	Factored Force (k)	Braced Frame - Column Line 1- Level 3	Moment Frame - Column Line 2- Level 3	Inside Concrete Moment Frame (1 of 3)	Outer Concrete Moment Frame (1 of 2)	Wood Braced Frame (1 of 4)
Level 3	66.68	106.69	0.55	5.45	0.27	0.55	4.41

Table \qquad - Torsional Shear Values due to Wind Load Case 1 for Level 3 (North/South)

Load Case 2:

Torsional Shear - North/South Direction - Level 1							
Load Combination $=$$\begin{gathered} 1.2 \mathrm{D}+1.6 \mathrm{~W}+\mathrm{L}+0.5(\mathrm{Lr} \\ \text { or } \mathrm{S} \text { or } \mathrm{R}) \end{gathered}$	Force (k)	Factored Force (k)	Distributed Force (kips)				
			Braced Frame Column Line 1 Level 1	Moment Frame Column Line 1.8 Level 1	Inside Concrete Moment Frame (1 of 3)	Outer Concrete Moment Frame (1 of 2)	Wood Braced Frame (1 of 4)
Level 1	28.22	45.15	0.64	6.44	0.49	0.98	6.41

Table \qquad - Torsional Shear Values due to Wind Load Case 2 for Level 1 (North/South)

Table \qquad - Torsional Shear Values due to Wind Load Case 2 for Level 2 (North/South)

Torsional Shear - North/South Direction - Level 3							
Load Combination $=$ 1.2D+1.6W+L+0.5(Lr or S or R)	Force (k)	Factored Force (k)	Braced Frame - Column Line 1- Level 3	Moment Frame - Column Line 2- Level 3	Inside Corce (kips) Moment Frame (1 of 3)	Outer Concrete Moment Frame (1 of 2)	Wood Braced Frame (1 of 4)
Level 3	50.01	80.02	0.95	9.49	0.48	0.95	

Table \qquad - Torsional Shear Values due to Wind Load Case 2 for Level 3 (North/South)

Torsional Load Calculations

Torsional Load: $\mathrm{F}_{\mathrm{it}}=\left[\left(\mathrm{k}_{\mathrm{i}}\right)\left(\mathrm{d}_{\mathrm{i}}\right)\left(\mathrm{P}_{\mathrm{y}}\right)\left(\mathrm{e}_{\mathrm{x}}\right)\right] /\left[\sum\left(\left(\mathrm{k}_{\mathrm{j}}\right)\left(\mathrm{d}_{\mathrm{j}}\right)^{2}\right)\right]$
For torsional loads, the entire building was analyzed per level instead of using "Buildings $1,2,3$, and $4 "$. The results can be seen below.

North/South Direction:

Level 1: Seismic Load (unfactored)
$\mathrm{e}_{\mathrm{x}}=99.6438^{\prime}-30.9675^{\prime}=68.6763^{\prime}$
$\mathrm{P}_{\mathrm{y}}=8.96 \mathrm{k}+11.17 \mathrm{k}+48.32 \mathrm{k}=68.45 \mathrm{k}$
$\sum \mathrm{k}_{\mathrm{j}} \mathrm{d}_{\mathrm{j}}^{2}=(10)(95.712)\left(29.8165^{\prime}\right)^{2}+(352.609)\left(80.9335^{\prime}\right)^{2}+(2)(67.618)\left(32{ }^{\prime}\right)^{2}+(2)(67.618)\left(64^{\prime}\right)^{2}$
$\left.+(4)(385.357)(73.75)^{\prime}\right)^{2}=12,236,893.56$

Braced Frame (column line 1):
$\mathrm{F}_{\mathrm{it}}=(95.712 \mathrm{k} / \mathrm{in})\left(29.8165^{\prime}\right)(68.45 \mathrm{k})\left(68.6763^{\prime}\right) / 12,236,893.56=\mathbf{1 . 0 9 6 3} \mathbf{k}$

Moment Frame (column line 1.8):
$\mathrm{F}_{\mathrm{it}}=(352.609 \mathrm{k} / \mathrm{in})\left(80.9335^{\prime}\right)(68.45 \mathrm{k})\left(68.6763^{\prime}\right) / 12,236,893.56=\mathbf{1 0 . 9 6 3 0} \mathbf{k}$

Inside Moment Frames (column lines D and F):
$\mathrm{F}_{\text {it }}=(67.618 \mathrm{k} / \mathrm{in})\left(32^{\prime}\right)(68.45 \mathrm{k})\left(68.6763^{\prime}\right) / 12,236,893.56=\mathbf{0 . 8 3 1 2} \mathbf{k}$

Outer Moment Frames (column lines C and G):
$\mathrm{F}_{\text {it }}=(67.618 \mathrm{k} / \mathrm{in})\left(64^{\prime}\right)(68.45 \mathrm{k})\left(68.6763^{\prime}\right) / 12,236,893.56=\mathbf{1 . 6 6 2 5} \mathbf{k}$

Braced Frames (East/West Direction):
$\mathrm{F}_{\mathrm{it}}=(385.357 \mathrm{k} / \mathrm{in})\left(73.75^{\prime}\right)(68.45 \mathrm{k})\left(68.6763^{\prime}\right) / 12,236,893.56=\mathbf{1 0 . 9 1 7 8} \mathbf{k}$
Level 2: Seismic Load (unfactored)
$e_{x}=107.9940^{\prime}-50.8422^{\prime}=57.1518^{\prime}$
$P_{y}=31.41 \mathrm{k}+21.39 \mathrm{k}+33.74 \mathrm{k}=86.54 \mathrm{k}$
$\sum \mathrm{k}_{\mathrm{j}} \mathrm{d}_{\mathrm{j}}^{2}=(10)(30.595)\left(49.6912^{\prime}\right)^{2}+(158.781)\left(79.4755^{\prime}\right)^{2}+(21.388)\left(120.8088^{\prime}\right)^{2}+$ $(2)(56.278)\left(32^{\prime}\right)^{2}+(2)(56.278)\left(64^{\prime}\right)^{2}+(4)(133.761)(73.75)^{2}=5,556,958.898$

Braced Frame (column line 1):
$\mathrm{F}_{\mathrm{it}}=(30.595 \mathrm{k} / \mathrm{in})\left(49.6912^{\prime}\right)(86.54 \mathrm{k})\left(57.1518^{\prime}\right) / 5,556,958.898=\mathbf{1 . 3 5 3 1} \mathbf{k}$
Moment Frame (column line 2):
$\mathrm{F}_{\mathrm{it}}=(158.781 \mathrm{k} / \mathrm{in})\left(79.4755^{\prime}\right)(86.54 \mathrm{k})\left(57.1518^{\prime}\right) / 5,556,958.898=\mathbf{1 1 . 2 3 1 6} \mathbf{k}$

Moment Frame (column line 4):
$\mathrm{F}_{\mathrm{it}}=(21.388 \mathrm{k} / \mathrm{in})\left(120.8088^{\prime}\right)(86.54 \mathrm{k})\left(57.1518^{\prime}\right) / 5,556,958.898=\mathbf{2 . 2 9 9 7} \mathbf{k}$

Inside Moment Frames (column lines D and F):
$\mathrm{F}_{\mathrm{it}}=(56.278 \mathrm{k} / \mathrm{in})\left(32^{\prime}\right)(86.54 \mathrm{k})\left(57.1518^{\prime}\right) / 5,556,958.898=\mathbf{1 . 6 0 2 9} \mathbf{k}$

Outer Moment Frames (column lines C and G):
$\mathrm{F}_{\mathrm{it}}=(56.278 \mathrm{k} / \mathrm{in})\left(64^{\prime}\right)(86.54 \mathrm{k})\left(57.1518^{\prime}\right) / 5,556,958.898=3.2057 \mathbf{k}$
Braced Frames (East/West Direction):
$\mathrm{F}_{\mathrm{it}}=(133.761 \mathrm{k} / \mathrm{in})\left(73.75^{\prime}\right)(86.54 \mathrm{k})\left(57.1518^{\prime}\right) / 5,556,958.898=\mathbf{8 . 7 8 0 2} \mathbf{k}$

Level 3: Seismic Load (unfactored)
$e_{x}=52.7936^{\prime}-46.5262^{\prime}=6.2674^{\prime}$
$P_{y}=40.79 k$
$\sum \mathrm{k}_{\mathrm{j}} \mathrm{d}_{\mathrm{j}}^{2}=(10)(12.937)\left(45.3752^{\prime}\right)^{2}+(70.057)\left(83.7915^{\prime}\right)^{2}+(2)(9.211)\left(32^{\prime}\right)^{2}+(2)(9.211)\left(64^{\prime}\right)^{2}+$ $(4)(64.450)\left(73.75^{\prime}\right)^{2}=2,254,734.207$

Braced Frame (column line 1):
$\mathrm{F}_{\text {it }}=(12.937 \mathrm{k} / \mathrm{in})\left(45.3752^{\prime}\right)(40.79 \mathrm{k})\left(6.2674^{\prime}\right) / 2,254,734.207=\mathbf{0 . 0 6 6 5 6} \mathbf{~ k}$

Moment Frame (column line 2):
$\mathrm{F}_{\mathrm{it}}=(70.057 \mathrm{k} / \mathrm{in})\left(83.7915^{\prime}\right)(40.79 \mathrm{k})\left(6.2674{ }^{\prime}\right) / 2,254,734.207=\mathbf{0 . 6 6 5 6} \mathbf{k}$
Inside Moment Frames (column lines D and F):
$\mathrm{F}_{\mathrm{it}}=(9.211 \mathrm{k} / \mathrm{in})\left(32^{\prime}\right)(40.79 \mathrm{k})\left(6.2674^{\prime}\right) / 2,254,734.207=\mathbf{0 . 0 3 3 4 2} \mathbf{k}$
Outer Moment Frames (column lines C and G):
$\mathrm{F}_{\mathrm{it}}=(9.211 \mathrm{k} / \mathrm{in})\left(64^{\prime}\right)(40.79 \mathrm{k})\left(6.2674^{\prime}\right) / 2,254,734.207=\mathbf{0 . 0 6 6 8 4} \mathbf{k}$

Braced Frames (East/West Direction):
$\mathrm{F}_{\mathrm{it}}=(64.450 \mathrm{k} / \mathrm{in})\left(73.75^{\prime}\right)(40.79 \mathrm{k})\left(6.2674^{\prime}\right) / 2,254,734.207=\mathbf{0 . 5 3 8 9} \mathbf{k}$
Level 1: Wind Load (Unfactored) - Load Case 1
$\mathrm{e}_{\mathrm{x}}=66.1510^{\prime}-30.9675^{\prime}=35.1835^{\prime}$
$P_{y}=37.63 \mathrm{k}$
$\sum \mathrm{k}_{\mathrm{j}} \mathrm{d}_{\mathrm{j}}^{2}=(10)(95.712)\left(29.8165^{\prime}\right)^{2}+(352.609)\left(80.9335^{\prime}\right)^{2}+(2)(67.618)\left(32^{\prime}\right)^{2}+(2)(67.618)\left(64^{\prime}\right)^{2}$ $+(4)(385.357)\left(73.75^{\prime}\right)^{2}=12,236,893.56$

Braced Frame (column line 1):
$\mathrm{F}_{\text {it }}=(95.712 \mathrm{k} / \mathrm{in})\left(29.8165^{\prime}\right)(37.63 \mathrm{k})(35.1835$ ')/12,236,893.56 $=\mathbf{0 . 3 0 8 8} \mathbf{k}$
Moment Frame (column line 1.8):
$\mathrm{F}_{\text {it }}=(352.609 \mathrm{k} / \mathrm{in})\left(80.9335^{\prime}\right)(37.63 \mathrm{k})\left(35.1835^{\prime}\right) / 12,236,893.56=3.0876 \mathbf{k}$
Inside Moment Frames (column lines D and F):
$\mathrm{F}_{\text {it }}=(67.618 \mathrm{k} / \mathrm{in})\left(32^{\prime}\right)(37.63 \mathrm{k})\left(35.1835^{\prime}\right) / 12,236,893.56=\mathbf{0 . 2 3 4 1} \mathbf{k}$
Outer Moment Frames (column lines C and G):
$\mathrm{F}_{\text {it }}=(67.618 \mathrm{k} / \mathrm{in})\left(64^{\prime}\right)(37.63 \mathrm{k})\left(35.1835^{\prime}\right) / 12,236,893.56=\mathbf{0 . 4 6 8 2} \mathbf{k}$
Braced Frames (East/West Direction):
$\mathrm{F}_{\mathrm{it}}=(385.357 \mathrm{k} / \mathrm{in})\left(73.75^{\prime}\right)(37.63 \mathrm{k})\left(35.1835^{\prime}\right) / 12,236,893.56=\mathbf{3 . 0 7 4 9} \mathbf{k}$
Level 2: Wind Load (Unfactored) - Load Case 1
$\mathrm{e}_{\mathrm{x}}=86.4479^{\prime}-50.8422^{\prime}=35.6057^{\prime}$
$\mathrm{P}_{\mathrm{y}}=46.46 \mathrm{k}+14.21 \mathrm{k}=60.67 \mathrm{k}$
$\sum \mathrm{k}_{\mathrm{j}} \mathrm{d}_{\mathrm{j}}{ }^{2}=(10)(30.595)\left(49.6912^{\prime}\right)^{2}+(158.781)\left(79.4755^{\prime}\right)^{2}+(21.388)\left(120.8088^{\prime}\right)^{2}+$ (2) $(56.278)\left(32^{\prime}\right)^{2}+(2)(56.278)\left(64^{\prime}\right)^{2}+(4)(133.761)(73.75)^{2}=5,556,958.898$

Braced Frame (column line 1):
$\mathrm{F}_{\text {it }}=(30.595 \mathrm{k} / \mathrm{in})\left(49.6912^{\prime}\right)(60.67 \mathrm{k})\left(35.6057^{\prime}\right) / 5,556,958.898=\mathbf{0 . 5 9 1 0} \mathbf{k}$
Moment Frame (column line 2):
$\mathrm{F}_{\mathrm{it}}=(158.781 \mathrm{k} / \mathrm{in})\left(79.4755^{\prime}\right)(60.67 \mathrm{k})\left(35.6057^{\prime}\right) / 5,556,958.898=4.9056 \mathbf{k}$
Moment Frame (column line 4):
$\mathrm{F}_{\text {it }}=(21.388 \mathrm{k} / \mathrm{in})\left(120.8088^{\prime}\right)(60.67 \mathrm{k})\left(35.6057^{\prime}\right) / 5,556,958.898=\mathbf{1 . 0 0 4 4} \mathbf{k}$
Inside Moment Frames (column lines D and F):
$\mathrm{F}_{\text {it }}=(56.278 \mathrm{k} / \mathrm{in})\left(32^{\prime}\right)(60.67 \mathrm{k})\left(35.6057^{\prime}\right) / 5,556,958.898=\mathbf{0 . 7 0 0 1} \mathbf{k}$
Outer Moment Frames (column lines C and G):
$\mathrm{F}_{\text {it }}=(56.278 \mathrm{k} / \mathrm{in})\left(64^{\prime}\right)(60.67 \mathrm{k})\left(35.6057^{\prime}\right) / 5,556,958.898=\mathbf{1 . 4 0 0 2} \mathbf{k}$
Braced Frames (East/West Direction):
$\mathrm{F}_{\text {it }}=(133.761 \mathrm{k} / \mathrm{in})\left(73.75^{\prime}\right)(60.67 \mathrm{k})\left(35.6057^{\prime}\right) / 5,556,958.898=3.8349 \mathbf{k}$
Level 3: Wind Load (Unfactored) - Load Case 1
$\mathrm{e}_{\mathrm{x}}=66.1510^{\prime}-46.5262^{\prime}=19.6248^{\prime}$
$\mathrm{P}_{\mathrm{y}}=66.68 \mathrm{k}$
$\sum \mathrm{k}_{\mathrm{j}} \mathrm{d}_{\mathrm{j}}^{2}=(10)(12.937)\left(45.3752^{\prime}\right)^{2}+(70.057)\left(83.7915^{\prime}\right)^{2}+(2)(9.211)\left(32^{\prime}\right)^{2}+(2)(9.211)\left(64^{\prime}\right)^{2}+$ (4) $(64.450)\left(73.75^{\prime}\right)^{2}=2,254,734.207$

Braced Frame (column line 1):
$\mathrm{F}_{\mathrm{it}}=(12.937 \mathrm{k} / \mathrm{in})\left(45.3752^{\prime}\right)(66.68 \mathrm{k})\left(19.6248^{\prime}\right) / 2,254,734.207=\mathbf{0 . 3 4 0 7} \mathbf{k}$

Moment Frame (column line 2):
$\mathrm{F}_{\mathrm{it}}=(70.057 \mathrm{k} / \mathrm{in})\left(83.7915^{\prime}\right)(66.68 \mathrm{k})\left(19.6248^{\prime}\right) / 2,254,734.207=3.4069 \mathbf{k}$

Inside Moment Frames (column lines D and F):
$\mathrm{F}_{\mathrm{it}}=(9.211 \mathrm{k} / \mathrm{in})\left(32^{\prime}\right)(68.68 \mathrm{k})\left(19.6248^{\prime}\right) / 2,254,734.207=\mathbf{0 . 1 7 1 1} \mathbf{k}$

Outer Moment Frames (column lines C and G):
$\mathrm{F}_{\text {it }}=(9.211 \mathrm{k} / \mathrm{in})\left(64^{\prime}\right)(66.68 \mathrm{k})\left(19.6248^{\prime}\right) / 2,254,734.207=\mathbf{0 . 3 4 2 1} \mathbf{k}$
Braced Frames (East/West Direction):
$\mathrm{F}_{\mathrm{it}}=(64.450 \mathrm{k} / \mathrm{in})\left(73.75^{\prime}\right)(66.68 \mathrm{k})\left(19.6248^{\prime}\right) / 2,254,734.207=2.7586 \mathbf{k}$

Load Case 2: Multiply loads by 0.75 and use an eccentricity of $0.15 \underline{b}_{\underline{x}}$
Level 1: Wind Load (Unfactored) - Load Case 2
$\mathrm{e}_{\mathrm{x}}=35.1835^{\prime}+(0.15)\left(172.8958^{\prime}\right)=61.1179^{\prime}$
$P_{y}=(0.75)(37.63 k)=28.22 k$
$\sum \mathrm{k}_{\mathrm{j}} \mathrm{d}_{\mathrm{j}}^{2}=(10)(95.712)\left(29.8165^{\prime}\right)^{2}+(352.609)\left(80.9335^{\prime}\right)^{2}+(2)(67.618)\left(32^{\prime}\right)^{2}+(2)(67.618)\left(64^{\prime}\right)^{2}$ $+(4)(385.357)\left(73.75^{\prime}\right)^{2}=12,236,893.56$

Braced Frame (column line 1):
$\mathrm{F}_{\mathrm{it}}=(95.712 \mathrm{k} / \mathrm{in})\left(29.8165^{\prime}\right)(28.22 \mathrm{k})\left(61.1179^{\prime}\right) / 12,236,893.56=\mathbf{0 . 4 0 2 2} \mathbf{k}$
Moment Frame (column line 1.8):
$\mathrm{F}_{\mathrm{it}}=(352.609 \mathrm{k} / \mathrm{in})\left(80.9335^{\prime}\right)(28.22 \mathrm{k})\left(61.1179^{\prime}\right) / 12,236,893.56=\mathbf{4 . 0 2 2 3} \mathbf{k}$

Inside Moment Frames (column lines D and F):
$\mathrm{F}_{\text {it }}=(67.618 \mathrm{k} / \mathrm{in})\left(32^{\prime}\right)(28.22 \mathrm{k})\left(61.1179^{\prime}\right) / 12,236,893.56=\mathbf{0 . 3 0 5 0} \mathbf{k}$
Outer Moment Frames (column lines C and G):
$\mathrm{F}_{\text {it }}=(67.618 \mathrm{k} / \mathrm{in})\left(64^{\prime}\right)(28.22 \mathrm{k})\left(61.1179^{\prime}\right) / 12,236,893.56=\mathbf{0 . 6 1 0 0} \mathbf{k}$
Braced Frames (East/West Direction):
$\mathrm{F}_{\mathrm{it}}=(385.357 \mathrm{k} / \mathrm{in})\left(73.75^{\prime}\right)(28.22 \mathrm{k})\left(61.1179^{\prime}\right) / 12,236,893.56=4.0057 \mathbf{k}$
Level 2: Wind Load (Unfactored) - Load Case 2
$\mathrm{e}_{\mathrm{x}}=35.6057^{\circ}+(0.15)\left(172.8958^{\prime}\right)=61.5401^{\prime}$
$P_{y}=(0.75)(60.67 \mathrm{k})=45.50 \mathrm{k}$
$\sum \mathrm{k}_{\mathrm{j}} \mathrm{d}_{\mathrm{j}}^{2}=(10)(30.595)\left(49.6912^{\prime}\right)^{2}+(158.781)\left(79.4755^{\prime}\right)^{2}+(21.388)\left(120.8088^{\prime}\right)^{2}+$ $(2)(56.278)\left(32^{\prime}\right)^{2}+(2)(56.278)\left(64^{\prime}\right)^{2}+(4)(133.761)(73.75)^{2}=5,556,958.898$

Braced Frame (column line 1):
$\mathrm{F}_{\mathrm{it}}=(30.595 \mathrm{k} / \mathrm{in})\left(49.6912^{\prime}\right)(45.50 \mathrm{k})\left(61.5401^{\prime}\right) / 5,556,958.898=\mathbf{0 . 7 6 6 1} \mathbf{~ k}$

Moment Frame (column line 2):
$\mathrm{F}_{\mathrm{it}}=(158.781 \mathrm{k} / \mathrm{in})\left(79.4755^{\prime}\right)(45.50 \mathrm{k})\left(61.5401^{\prime}\right) / 5,556,958.898=\mathbf{6 . 3 5 8 6} \mathbf{k}$

Moment Frame (column line 4):
$\mathrm{F}_{\mathrm{it}}=(21.388 \mathrm{k} / \mathrm{in})\left(120.8088^{\prime}\right)(45.50 \mathrm{k})\left(61.5401^{\prime}\right) / 5,556,958.898=\mathbf{1 . 3 0 2 0} \mathbf{k}$

Inside Moment Frames (column lines D and F):
$\mathrm{F}_{\mathrm{it}}=(56.278 \mathrm{k} / \mathrm{in})\left(32^{\prime}\right)(45.50 \mathrm{k})\left(61.5401^{\prime}\right) / 5,556,958.898=\mathbf{0 . 9 0 7 4} \mathbf{k}$
Outer Moment Frames (column lines C and G):
$\mathrm{F}_{\text {it }}=(56.278 \mathrm{k} / \mathrm{in})\left(64^{\prime}\right)(45.50 \mathrm{k})\left(61.5401^{\prime}\right) / 5,556,958.898=\mathbf{1 . 8 1 4 9} \mathbf{k}$
Braced Frames (East/West Direction):
$\mathrm{F}_{\mathrm{it}}=(133.761 \mathrm{k} / \mathrm{in})\left(73.75^{\prime}\right)(45.50 \mathrm{k})\left(61.5401^{\prime}\right) / 5,556,958.898=4.9708 \mathbf{k}$

Level 3: Wind Load (Unfactored) - Load Case 2
$\mathrm{e}_{\mathrm{x}}=19.6248^{\prime}+(0.15)\left(172.8958^{\prime}\right)=45.5592^{\prime}$
$P_{y}=(0.75)(66.68 \mathrm{k})=50.01 \mathrm{k}$
$\sum \mathrm{k}_{\mathrm{j}} \mathrm{d}_{\mathrm{j}}^{2}=(10)(12.937)\left(45.3752^{\prime}\right)^{2}+(70.057)\left(83.7915^{\prime}\right)^{2}+(2)(9.211)\left(32^{\prime}\right)^{2}+(2)(9.211)\left(64^{\prime}\right)^{2}+$ $(4)(64.450)\left(73.75^{\prime}\right)^{2}=2,254,734.207$

Braced Frame (column line 1):
$\mathrm{F}_{\mathrm{it}}=(12.937 \mathrm{k} / \mathrm{in})\left(45.3752^{\prime}\right)(50.01 \mathrm{k})\left(45.5592^{\prime}\right) / 2,254,734.207=\mathbf{0 . 5 9 3 2} \mathbf{k}$

Moment Frame (column line 2):
$\mathrm{F}_{\mathrm{it}}=(70.057 \mathrm{k} / \mathrm{in})\left(83.7915^{\prime}\right)(50.01 \mathrm{k})\left(45.5592^{\prime}\right) / 2,254,734.207=5.9318 \mathbf{k}$

Inside Moment Frames (column lines D and F):
$\mathrm{F}_{\mathrm{it}}=(9.211 \mathrm{k} / \mathrm{in})\left(32^{\prime}\right)(50.01 \mathrm{k})\left(45.5592^{\prime}\right) / 2,254,734.207=\mathbf{0 . 2 9 7 8} \mathbf{k}$

Outer Moment Frames (column lines C and G):
$\mathrm{F}_{\text {it }}=(9.211 \mathrm{k} / \mathrm{in})\left(64^{\prime}\right)(50.01 \mathrm{k})\left(45.5592^{\prime}\right) / 2,254,734.207=\mathbf{0 . 5 9 5 7} \mathbf{~ k}$

Braced Frames (East/West Direction):
$\mathrm{F}_{\mathrm{it}}=(64.450 \mathrm{k} / \mathrm{in})\left(73.75^{\prime}\right)(50.01 \mathrm{k})\left(45.5592^{\prime}\right) / 2,254,734.207=4.8031 \mathbf{k}$

East/West Direction:

Torsional effects were not accounted for in the East/West direction since the center of mass and center of rigidity either match up perfectly in the y-direction for each floor level or were only off by less than one foot. Hence, for seismic loads the eccentricity would be zero or very close to zero. Similarly, Wind Load Case 1 was not considered since the wind load would basically be applied at the center of the building in the East/West direction, which lines up with the center of
rigidity in the East/West direction. Therefore, this case would also produce little or no eccentricity. Wind Load Case 2 was not considered for the East/West direction either because it was assumed that any small torsional effects would not control in this direction. The five moment frames and four braced frames in the East/West direction are centered on the building and spaced symmetrically on both sides of the building, so torsional effects should be minimal in this direction.

Total Shear

Total shear values were determined by combining the direct shear at each frame and level with the torsional shear at each frame and level. Torsional shear was either added or subtracted to the direct shear depending on which side of the center of rigidity the frames were located and which side of the center of rigidity the load was applied.

$$
\mathrm{F}_{\mathrm{i}}=\mathrm{F}_{\mathrm{i}, \text { direct }}+/-\mathrm{F}_{\mathrm{i}, \text { torsion }}
$$

Due to Seismic Loads:

North/South Direction:

Total Shear - North/South Direction - Braced Frame at Column Line 1			
Load Combination = $\mathbf{1 . 2 D + 1 . 0 E}+\mathbf{+ 0 . 2 S}$	Factored Direct Shear Force (k)	Factored Torsional Shear Force (k)	Total Factored Shear (k)
Level 1	0.90	-1.10	-0.20
Level 2	1.57	-1.35	0.22
Level 3	2.04	-0.07	1.97

Table \qquad - Total Shear Values due to Seismic Loads for Braced Frame at Column Line 1 (North/South)

Total Shear - North/South Direction - Moment Frame at Column Line 2			
Load Combination = $\mathbf{1 . 2 D + 1 . 0 E + L + 0 . 2 S}$	Factored Direct Shear Force (k)	Factored Torsional Shear Force (k)	Total Factored Shear (k)
Level 2	66.83	11.23	78.06
Level 3	20.40	0.67	21.07

Table \qquad - Total Shear Values due to Seismic Loads for Moment Frame at Column Line 2 (North/South)

Total Shear - North/South Direction - Moment Frame at Column Line 1.8			
Load Combination = $\mathbf{1 . 2 D}+\mathbf{1 . 0 E}+L+0.2 S$	Factored Direct Shear Force (k)	Factored Torsional Shear Force (k)	Total Factored Shear (k)
Level 1	59.49	10.96	70.45

Table \qquad - Total Shear Values due to Seismic Loads for Moment Frame at Column Line 1.8
(North/South)

Total Shear - North/South Direction - Moment Frame at Column Line 4			
Load Combination = $\mathbf{1 . 2 D}+\mathbf{1 . 0 E}+L+0.2 S$	Factored Direct Shear Force (k)	Factored Torsional Shear Force (k)	Total Factored Shear (k)
Level 2	4.01	2.30	6.31

Table \qquad - Total Shear Values due to Seismic Loads for Moment Frame at Column Line 4 (North/South)

East/West Direction:

Total Shear - East/West Direction - Inside Concrete Moment Frame			
Load Combination = $\mathbf{1 . 2 D + 1 . 0 E + L + 0 . 2 S}$	Factored Direct Shear Force (k)	Factored Torsional Shear Force (k)	Total Factored Shear (k)
Level 1	14.04	0.83	14.87
Level 2	17.75	1.60	19.35
Level 3	8.37	0.03	8.40

Table \qquad - Total Shear Values due to Seismic Loads for Inside Concrete Moment Frame (East/West)

Total Shear - East/West Direction - Outer Concrete Moment Frame			
Load Combination = $\mathbf{1 . 2 D + 1 . 0 E + L + 0 . 2 S}$	Factored Direct Shear Force (k)	Factored Torsional Shear Force (k)	Total Factored Shear (k)
Level 1	12.64	1.66	14.30
Level 2	14.81	3.21	18.02
Level 3	5.46	0.07	5.53

Table \qquad - Total Shear Values due to Seismic Loads for Outer Concrete Moment Frame (East/West)

Total Shear - East/West Direction - Wood Braced Frame			
Load Combination = $\mathbf{1 . 2 D + 1 . 0 E + L + 0 . 2 S}$	Factored Direct Shear Force (k)	Factored Torsional Shear Force (k)	Total Factored Shear (k)
Level 1	0.26	10.92	11.18
Level 2	0.92	8.78	9.70
Level 3	1.19	0.54	1.73

Table \qquad - Total Shear Values due to Seismic Loads for Wood Braced Frame (East/West)

Due to Wind Loads:
$\underline{\text { Load Case 1: }}$
North/South Direction

Total Shear - North/South Direction - Braced Frame at Column Line 1			
Load Combination = 1.2D+1.6W+L+0.5 (Lr or S or R)	Factored Direct Shear Force (k)	Factored Torsional Shear Force (k)	Total Factored Shear (k)
Level 1	6.02	-0.49	5.53
Level 2	3.72	-0.95	2.77
Level 3	5.33	-0.55	4.78

Table \qquad - Total Shear Values due to Wind Load Case 1 for Braced Frame at Column Line 1
(North/South)

Total Shear - North/South Direction - Moment Frame at Column Line 2			
Load Combination = 1.2D+1.6W+L+0.5 (Lr or S or R)	Factored Direct Shear Force (k)	Factored Torsional Shear Force (k)	Total Factored Shear (k)
Level 2	57.05	7.85	64.90
Level 3	53.34	5.45	58.79

Table \qquad - Total Shear Values due to Wind Load Case 1 for Moment Frame at Column Line 2 (North/South)

Total Shear - North/South Direction - Moment Frame at Column Line 4			
Load Combination = 1.2D+1.6W+L+0.5 (Lr or S or R)	Factored Direct Shear Force (k)	Factored Torsional Shear Force (k)	Total Factored Shear (k)
Level 2	2.68	1.61	4.29

Table \qquad Total Shear Values due to Wind Load Case 1 for Moment Frame at Column Line 4 (North/South)

East/West Direction:

Total Shear - East/West Direction - Inside Concrete Moment Frame			
Load Combination = $\mathbf{1 . 2 D + 1 . 6 W + L + 0 . 5 ~ (L r ~}$ or S or R)	Factored Direct Shear Force (k)	Factored Torsional Shear Force (k)	Total Factored Shear (k)
Level 1	14.73	0.37	
Level 2	16.90	1.12	15.10
Level 3	8.81	0.27	18.02

Table \qquad - Total Shear Values due to Wind Load Case 1 for Inside Concrete Moment Frame (East/West)

Total Shear - East/West Direction - Outer Concrete Moment Frame			
Load Combination = $\mathbf{1 . 2 D + 1 . 6 W + L + 0 . 5 ~ (L r ~}$ or S or R)	Factored Direct Shear Force (k)	Factored Torsional Shear Force (k)	Total Factored Shear (k)
Level 1	9.61	0.75	10.36
Level 2	11.02	2.24	13.26
Level 3	5.75	0.55	6.30

Table \qquad - Total Shear Values due to Wind Load Case 1 for Outer Concrete Moment Frame (East/West)

Total Shear - East/West Direction - Wood Braced Frame			
Load Combination = $\mathbf{1 . 2 D + 1 . 6 W + L + 0 . 5 ~ (L r ~}$ or S or R)	Factored Direct Shear Force (k)	Factored Torsional Shear Force (k)	Total Factored Shear (k)
Level 1	2.10	4.92	7.02
Level 2	2.41	6.14	8.55
Level 3	1.26	4.41	5.67

Table \qquad - Total Shear Values due to Wind Load Case 1 for Wood Braced Frame (East/West)

Load Case 2:
North/South Direction:

Total Shear - North/South Direction - Braced Frame at Column Line 1			
Load Combination = 1.2D+1.6W+L+0.5 (Lr or S or R)	Factored Direct Shear Force (k)	Factored Torsional Shear Force (k)	Total Factored Shear (k)
Level 1	4.52	-0.64	3.88
Level 2	2.79	-1.23	1.56
Level 3	4.00	-0.95	3.05

Table \qquad - Total Shear Values due to Wind Load Case 2 for Braced Frame at Column Line 1 (North/South)

Total Shear - North/South Direction - Moment Frame at Column Line 2			
Load Combination = 1.2D+1.6W+L+0.5 (Lr or S or R)	Factored Direct Shear Force (k)	Factored Torsional Shear Force (k)	Total Factored Shear (k)
Level 2	42.79	10.17	52.96
Level 3	40.01	9.49	49.50

Table \qquad Total Shear Values due to Wind Load Case 2 for Moment Frame at Column Line 2 (North/South)

Total Shear - North/South Direction - Moment Frame at Column Line 4			
Load Combination = $\mathbf{1 . 2 D}+1.6 \mathrm{~W}+\mathrm{L}+0.5(\mathrm{Lr}$ or S or R)	Factored Direct Shear Force (k)	Factored Torsional Shear Force (k)	Total Factored Shear (k)
Level 2	2.01	2.08	4.09

Table \qquad - Total Shear Values due to Wind Load Case 2 for Moment Frame at Column Line 4 (North/South)

East/West Direction:

Total Shear - East/West Direction - Inside Concrete Moment Frame			
Load Combination = 1.2D+1.6W+L+0.5 (Lr or S or R)	Factored Direct Shear Force (k)	Factored Torsional Shear Force (k)	Total Factored Shear (k)
Level 1	11.05	0.49	11.54
Level 2	12.68	1.45	14.13
Level 3	6.61	0.48	7.09

Table \qquad - Total Shear Values due to Wind Load Case 2 for Inside Concrete Moment Frame (East/West)

Total Shear - East/West Direction - Outer Concrete Moment Frame			
Load Combination = $\mathbf{1 . 2 D + 1 . 6 W + L + 0 . 5 ~ (L r ~}$ or S or R)	Factored Direct Shear Force (k)	Factored Torsional Shear Force (k)	Total Factored Shear (k)
Level 1	7.21	0.98	8.19
Level 2	8.27	2.90	11.17
Level 3	4.31	0.95	5.26

Table \qquad - Total Shear Values due to Wind Load Case 2 for Outer Concrete Moment Frame (East/West)

Total Shear - East/West Direction - Wood Braced Frame			
Load Combination = $\mathbf{1 . 2 D}+\mathbf{1 . 6 W + L + 0 . 5}$ (Lr or S or R)	Factored Direct Shear Force (k)	Factored Torsional Shear Force (k)	Total Factored Shear (k)
Level 1	1.58	6.41	7.99
Level 2	1.81	7.95	9.76
Level 3	0.95	4.80	5.75

Table \qquad - Total Shear Values due to Wind Load Case 2 for Wood Braced Frame (East/West)

Drift and Displacement

Drift and displacement values were determined for each frame at each applicable level by applying the total forces due to direct loads and torsional loads to the SAP models of each frame. Drifts due to seismic loads were multiplied by a C_{d} factor of $31 / 2$ and divided by an importance factor of 1.25 . Since two different seismic force-resisting systems were considered for the natatorium, the worst case C_{d} factor was used. For the wood braced frames, a C_{d} factor of $31 / 2$ applies to light-framed wall systems using flat strap bracing. For the concrete moment frames, a C_{d} factor of $21 / 2$ applies to ordinary reinforced concrete moment frames. Therefore, a C_{d} factor of $31 / 2$ was conservatively assumed to apply to all frames. This value was then compared to $0.015 h_{s x}$ for each story, where $h_{s x}$ is the story height below Level x. All frames met the seismic load drift limits.

For drift due to seismic loads:

$$
\begin{aligned}
& \Delta_{\mathrm{x}}=\left(\mathrm{C}_{\mathrm{d}}\right)\left(\Delta_{\mathrm{xe}}\right) / \mathrm{I} \\
& \mathrm{C}_{\mathrm{d}}=31 / 2(\text { Light-framed wall systems using flat strap bracing }) \\
& \mathrm{I}=1.25
\end{aligned}
$$

Table 12.12.1 (ASCE 7-05):
Allowable Story Drift $=0.015 h_{\text {sx }}$ (all other structures, Occupancy Category III)
Drifts due to unfactored wind loads were compared to an allowable limit of $\mathrm{H} / 400$, with H being the elevation height of the level, or with H being the story height.

North/South Direction:

Story Drifts - North/South Direction - Braced Frame at Column Line 1					
Unfactored Seismic	Deflection (in)	Defl. $\left(\mathbf{C}_{\mathrm{d}}{ }^{*}\right.$ Defl...ee $\left.^{\prime}\right)$	Story Height (ft)	Limit $=$ $\mathbf{0 . 0 1 5 h _ { \text { sx } }}$ (in)	
Level 1	0.0203	0.0569	13.33	2.4000	OK
Level 2	0.0053	0.0148	13.33	2.4000	OK
Level 3	0.0015	0.0042	13.33	2.4000	OK

Table \qquad - Story Drifts due to Seismic Loads for Braced Frame at Column Line 1 (North/South)

Deflections - North/South Direction - Braced Frame at Column Line 1				
Unfactored Wind	Deflection from SAP (in)	Elevation (ft)	Limit =H/400 (in)	
Level 1	0.1270	13.33	0.4000	OK
Level 2	0.2764	26.67	0.8000	OK
Level 3	0.4236	40.00	1.2000	OK

Table \qquad - Deflections due to Wind Loads for Braced Frame at Column Line 1 (North/South)

Story Drifts - North/South Direction - Braced Frame at Column Line 1				
Unfactored Wind	Deflection (in)	Story Height (ft)	Limit =H/400 (in)	
Level 1	0.1270	13.33	0.4000	OK
Level 2	0.1495	13.33	0.4000	OK
Level 3	0.1471	13.33	0.4000	OK

Table \qquad - Story Drifts due to Wind Loads for Braced Frame at Column Line 1 (North/South)

Story Drifts - North/South Direction - Moment Frame at Column Line 2					
Unfactored Seismic	Deflection from SAP (in)	Defl. $_{\mathrm{x}}=$ $\left(\mathrm{C}_{\mathrm{d}}\right.$ *Defl. $\left._{\cdot \mathrm{xe}}\right) / I$	Story Height (ft)	Limit $=_{\mathbf{0 . 0 1 5 h}_{\mathrm{sx}}}$ (in)	
Level 2	0.6591	1.8455	22.50	4.0500	OK
Level 3	0.2621	0.7339	17.50	3.1500	OK

Table \qquad - Story Drifts due to Seismic Loads for Moment Frame at Column Line 2 (North/South)

Deflections - North/South Direction - Moment Frame at Column Line 2				
Unfactored Wind	Deflection from SAP (in)	Elevation (ft)	Limit =H/400 (in)	
Level 2	0.5475	22.50	0.6750	OK
Level 3	0.8469	40.00	1.2000	OK

Table \qquad - Deflections due to Wind Loads for Moment Frame at Column Line 2 (North/South)

Story Drifts - North/South Direction - Moment Frame at Column Line 2				
Unfactored Wind	Deflection from SAP (in)	Elevation (ft)	Limit =H/400 (in)	
Level 2	0.5475	22.50	0.6750	OK
Level 3	0.2994	17.50	0.5250	OK

Table \qquad - Story Drifts due to Wind Loads for Moment Frame at Column Line 2 (North/South)

Story Drifts - North/South Direction - Moment Frame at Column Line 1.8					
Unfactored Seismic	Deflection from SAP (in)	Defl $_{\cdot \mathrm{x}}=$ $\left(\mathrm{C}_{\mathrm{d}}\right.$ *Defl $\left._{\cdot \mathrm{xe}}\right) / I$	Elevation (ft)	Limit = $\mathbf{0 . 0 1 5 h}_{\mathrm{sx}}$ (in)	
Level 1	0.0624	0.1748	10.50	1.8900	OK

Table \qquad - Story Drifts due to Seismic Loads for Moment Frame at Column Line 1.8 (North/South)

Story Drifts - North/South Direction - Moment Frame at Column Line 4					
Unfactored Seismic	Deflection from SAP (in)	$\begin{gathered} \text { Defl. }_{\cdot x}= \\ \left(C_{d}^{*} \text { Defl }_{\cdot x e}\right) / I \end{gathered}$	Elevation (ft)	$\begin{gathered} \text { Limit }= \\ 0.015 h_{\text {sx }} \\ \text { (in) } \end{gathered}$	
Level 2	0.2950	0.8261	24.67	4.4400	OK

Table \qquad - Story Drifts due to Seismic Loads for Moment Frame at Column Line 4 (North/South)

Deflections - North/South Direction - Moment Frame at Column Line 4				
Unfactored Wind	Deflection from SAP (in)	Elevation (ft)	Limit =H/400 (in)	
Level 2	0.1253	24.67	0.7400	OK

Table \qquad - Deflections due to Wind Loads for Moment Frame at Column Line 4 (North/South)

Story Drifts - North/South Direction - Moment Frame at Column Line 4				
Unfactored Wind	Deflection from SAP (in)	Elevation (ft)	Limit =H/400 (in)	
Level 2	0.1253	24.67	0.7400	OK

Table \qquad - Story Drifts due to Wind Loads for Moment Frame at Column Line 4 (North/South)

East/West Direction:

Story Drifts - East/West Direction - Concrete Moment Frame					
Unfactored Seismic	Deflection (in)	$\begin{gathered} \text { Defl. }_{\mathrm{x}}= \\ \left(\mathrm{C}_{\mathrm{d}}{ }^{*} \text { Defl. }_{\text {.ee }}\right) / \mathrm{I} \end{gathered}$	Story Height (ft)	Limit $=$ $0.015 h_{\text {sx }}$ (in)	
Level 1	0.2298	0.6434	10.50	1.8900	OK
Level 2	-0.0011	-0.0030	12.00	2.1600	OK
Level 3	0.6772	1.8963	17.50	3.1500	OK

Deflections - East/West Direction - Concrete Moment Frame				
Unfactored Wind	Deflection from SAP (in)	Elevation (ft)	Limit =L/400 (in)	
Level 1	0.1434	10.50	0.3150	OK
Level 2	0.1420	22.50	0.6750	OK
Level 3	0.5964	40.00	1.2000	OK

Table \qquad - Deflections due to Wind Loads for Moment Frame (East/West)

Story Drifts - East/West Direction - Concrete Moment Frame				
Unfactored Wind	Deflection (in)	Story Height (ft)	Limit =L/400 (in)	
Level 1	0.1434	10.50	0.3150	OK
Level 2	-0.0014	12.00	0.3600	OK
Level 3	0.4543	17.50	0.5250	OK

Table \qquad - Story Drifts due to Wind Loads for Moment Frame (East/West)

Story Drifts - East/West Direction - Braced Frame					
Unfactored Seismic	Deflection (in)	$\begin{gathered} \text { Defl. }{ }_{\mathrm{x}}= \\ \left(\mathrm{C}_{\mathrm{d}} * \text { Defl. }_{\text {.ee }}\right) / \text { I } \end{gathered}$	Story Height (ft)	Limit = $0.015 h_{\text {sx }}$ (in)	
Level 1	0.0733	0.2052	13.33	2.4000	OK
Level 2	0.0595	0.1666	13.33	2.4000	OK
Level 3	0.0367	0.1028	13.33	2.4000	OK

Table \qquad - Story Drifts due to Seismic Loads for Braced Frame (East/West)

Deflections - East/West Direction - Braced Frame				
Unfactored Wind	Deflection from SAP (in)	Elevation (ft)	Limit =H/400 (in)	
Level 1	0.0875	13.33	0.4000	OK
Level 2	0.1719	26.67	0.8000	OK
Level 3	0.2325	40.00	1.2000	OK

Table \qquad - Deflections due to Wind Loads for Braced Frame (East/West)

Structural Option
Dr. Linda M. Hanagan

Story Drifts - East/West Direction - Braced Frame				
Unfactored Wind	Deflection (in)	Story Height (ft)	Limit =H/400 (in)	
Level 1	0.0875	13.33	0.4000	OK
Level 2	0.0844	13.33	0.4000	OK
Level 3	0.0606	13.33	0.4000	OK

Table \qquad - Story Drifts due to Wind Loads for Braced Frame (East/West)

Wood Braced Frame - Column Line 1

Design of Diagonal Members:

Controlling Load Combination: $\mathrm{D}+0.75 \mathrm{~W}+0.75 \mathrm{~S}$
$\mathrm{D}+0.75 \mathrm{~W}+0.75 \mathrm{~S}=6.391 \mathrm{k}+(0.75)(9.291 \mathrm{k})+(0.75)(5.015 \mathrm{k})=17.121 \mathrm{k}($ compression $)$
Analyze Member Buckling About x Axis:

$$
\begin{aligned}
& \left(1_{\mathrm{e}} / \mathrm{d}\right)_{\max }=50 \\
& \left(\mathrm{l}_{\mathrm{e}} / \mathrm{d}\right)_{\mathrm{x}}=\left[(1.0)\left(15.5492^{\prime}\right)(12 \mathrm{in} / \mathrm{ft})\right] / \mathrm{d} \leq 50 \\
& \mathrm{~d} \geq 1_{\mathrm{e}} / 50=\left[\left(15.5492^{\prime}\right)(12 \mathrm{in} / \mathrm{ft})\right] / 50=3.73 \prime
\end{aligned}
$$

Analyze Member Bucking About y Axis:

$$
\begin{aligned}
& \left(l_{\mathrm{e}} / \mathrm{d}\right)_{\max }=50 \\
& \left(l_{\mathrm{e}} / \mathrm{d}\right)_{y}=\left[(1.0)\left(7.7746^{\prime}\right)(12 \mathrm{in} / \mathrm{ft})\right] / \mathrm{d} \leq 50 \\
& \mathrm{~d} \geq 1_{\mathrm{e}} / 50=\left[\left(7.7746^{\prime}\right)(12 \mathrm{in} / \mathrm{ft})\right] / 50=1.87^{\prime \prime}
\end{aligned}
$$

Try $31 / 2 " \times 51 / 2 "$
$\left(l_{\mathrm{e}} / \mathrm{d}\right)_{x}=[(15.5492)(12 \mathrm{in} / \mathrm{ft})] / 5.5 "=33.9255$
$\left(l_{\mathrm{e}} / \mathrm{d}\right)_{y}=\left[\left(7.7746^{\prime}\right)(12 \mathrm{in} / \mathrm{ft})\right] / 3.5^{\prime \prime}=26.6558$
$\mathrm{F}_{\mathrm{c}}=2300 \mathrm{psi}$ (Glulam ID \#50, S.P.) (p. 66 NDS Supplement)
$\mathrm{E}_{\text {min }}=980,000 \mathrm{psi}$
$\mathrm{C}_{\mathrm{D}}=1.6$ (for wind load)
$C_{M}=0.73$ for F_{c} (p. 64, NDS Supplement)
$C_{M}=0.833$ for E and $E_{\text {min }}$ (p. 64, NDS Supplement)
$\mathrm{C}_{\mathrm{t}}=1.0$
$\mathrm{E}^{\prime}{ }_{\text {min }}=\left(\mathrm{E}_{\text {min }}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)=(980,000)(0.833)(1.0)=816,340 \mathrm{psi}$
$\mathrm{c}=0.9$ (glulam)
$\mathrm{F}_{\mathrm{cE}}=\left[0.822 \mathrm{E}_{\text {min }}{ }^{\prime}\right] /\left[\left(\mathrm{l}_{\mathrm{e}} / \mathrm{d}\right)^{2}\right]=[(0.822)(816,340 \mathrm{psi})] /\left[(33.9255)^{2}\right]=583.029 \mathrm{psi}$
$\mathrm{F}_{\mathrm{c}}{ }^{*}=\mathrm{F}_{\mathrm{c}}\left(\mathrm{C}_{\mathrm{D}}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)=(2300 \mathrm{psi})(1.6)(0.73)(1.0)=2686.4 \mathrm{psi}$

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}^{*}=583.029 / 2686.4=0.2170 \\
& \begin{aligned}
{[1} & \left.+\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}^{*}\right] /(2 \mathrm{c})=[1+0.2170] /[(2)(0.9)]=0.6761 \\
\mathrm{C}_{\mathrm{P}} & =\left\{\left[1+\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}^{*}\right] /(2 \mathrm{c})\right\}-\sqrt{ }\left\{\left[\left(1+\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}\right) /(2 \mathrm{c})\right]^{2}-\left[\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}^{*}\right] / \mathrm{c}\right\} \\
& =\{0.6761\}-\sqrt{ }\left\{[0.6761]^{2}-[0.2170 / 0.9]\right\} \\
& =0.2113
\end{aligned}
\end{aligned}
$$

$\mathrm{F}^{\prime}{ }_{\mathrm{c}}=\mathrm{F}_{\mathrm{c}}{ }^{*}\left(\mathrm{C}_{\mathrm{P}}\right)=(2686.4 \mathrm{psi})(0.2113)=567.641 \mathrm{psi}$

$$
\mathrm{P}=\left(\mathrm{F}_{\mathrm{c}}{ }^{\prime}\right)(\mathrm{A})
$$

$$
\mathrm{A}_{\mathrm{req}{ }^{\prime} \mathrm{d}}=\mathrm{P} / \mathrm{F}_{\mathrm{c}}{ }_{\mathrm{c}}=17,121 \mathrm{lb} / 567.641 \mathrm{psi}=30.16 \mathrm{in}^{2}>\mathrm{A}_{\text {provided }}=19.25 \mathrm{in}^{2} \therefore \text { N.G. }
$$

$$
\text { Try } 3 \text { ½" x } 6 \text { 7/8" }
$$

$$
\left(1_{\mathrm{e}} / \mathrm{d}\right)_{\mathrm{x}}=[(15.5492)(12 \mathrm{in} / \mathrm{ft})] / 6.875^{\prime}=27.1404
$$

$$
\left(1_{e} / \mathrm{d}\right)_{y}=\left[\left(7.7746^{\prime}\right)(12 \mathrm{in} / \mathrm{ft})\right] / 3.5^{\prime \prime}=26.6558
$$

$$
\mathrm{F}_{\mathrm{cE}}=\left[0.822 \mathrm{E}_{\mathrm{min}}\right] /\left[\left(1_{\mathrm{e}} / \mathrm{d}\right)^{2}\right]=[(0.822)(816,340 \mathrm{psi})] /\left[(27.1404)^{2}\right]=910.982 \mathrm{psi}
$$

$$
\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}^{*}=910.982 / 2686.4=0.3391
$$

$$
\left[1+\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}^{*}\right] /(2 \mathrm{c})=[1+0.3391] /[(2)(0.9)]=0.7439
$$

$$
\mathrm{C}_{\mathrm{P}}=\left\{\left[1+\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}^{*}\right] /(2 \mathrm{c})\right\}-\sqrt{ }\left\{\left[\left(1+\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*} \mathrm{~J}\right) /(2 \mathrm{c})\right]^{2}-\left[\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}\right] / \mathrm{c}\right\}
$$

$$
=\{0.7439\}-\sqrt{ }\left\{[0.7439]^{2}-[0.3391 / 0.9]\right\}
$$

$$
=0.3236
$$

$$
\mathrm{F}_{\mathrm{c}}^{\prime}=\mathrm{F}_{\mathrm{c}}^{*}\left(\mathrm{C}_{\mathrm{P}}\right)=(2686.4 \mathrm{psi})(0.3236)=869.221 \mathrm{psi}
$$

$$
\mathrm{P}=\left(\mathrm{F}_{\mathrm{c}}^{\prime}\right)(\mathrm{A})
$$

$$
\mathrm{A}_{\mathrm{req}{ }_{\mathrm{d}}}=\mathrm{P} / \mathrm{F}^{\prime}{ }_{\mathrm{c}}=17,121 \mathrm{lb} / 869.221 \mathrm{psi}=19.70 \mathrm{in}^{2}<\mathrm{A}_{\text {provided }}=24.06 \mathrm{in}^{2} \therefore \mathbf{O K}
$$

Use $31 / 2 " \times 67 / 8$ " for all diagonal members

Concrete Moment Frame - Column Line 1.8

Beams

*Use rebar cover of $1.5\left(1.5^{\prime \prime}\right)=2.25^{\prime \prime}$ due to corrosive environment (natatorium) (see ACI 7.7.6.1)

Design beams as a continuous beam.
Design beams for worst case and make all four beams the same size.

Shear and Moment (Unfactored) for Column Line 1.8 (24x24 Columns and 24x26 Beams)							
	Beam 2	Beam 4	Beam 6	Beam 8	Column 1 Column)	Column 9 (Exterior Column)	Column 7 (Interior Column)
V_{D} (Top or Left)	-30.38	-31.95	-31.76	-33.31	-18.93	-19.28	1.71
V_{D} (Bottom or Right)	33.37	31.81	32.00	30.44	-18.93	-19.28	1.71
V_{L} (Top or Left)	-28.96	-30.45	-30.27	-31.75	-18.04	-18.38	1.62
V_{L} (Bottom or Right)	31.81	30.32	30.50	29.02	-18.04	-18.38	1.62
V_{E} (Top or Left)	2.25	1.83	1.75	1.94	13.25	-11.13	-14.78
V_{E} (Bottom or Right)	2.25	1.83	1.75	1.94	13.25	-11.13	-14.78
$V_{\text {E,REVERSEd }}$ (Top or Left)	-1.94	-1.75	-1.83	-2.25	-11.13	13.25	16.26
$\mathrm{V}_{\mathrm{E}, \text { ReVERSED }}$ (Bottom or Right)	-1.94	-1.75	-1.83	-2.25	-11.13	13.25	16.26
M_{D} (Top or Left)	-137.17	-171.67	-168.68	-184.05	137.17	-138.17	11.57
M_{D} (Bottom or Right)	-184.95	-169.40	-172.48	-138.17	-61.62	64.25	-6.37
M_{L} (Top or Left)	-130.71	-163.60	-160.66	-175.40	130.71	-131.72	10.99
M_{L} (Bottom or Right)	-176.31	-161.48	-164.41	-131.72	-58.61	61.30	-6.01
M_{E} (Top or Left)	38.11	29.42	28.31	29.75	-38.11	84.46	97.75
M_{E} (Bottom or Right)	-33.88	-29.16	-27.71	-32.40	101.00	-32.40	-57.47
$M_{\text {E,ReVersed }}$ (Top or Left)	-32.40	-27.71	-29.16	-33.88	32.40	-101.00	-107.38
$\mathrm{M}_{\mathrm{E}, \mathrm{ReV} \text { ersed }}$ (Bottom or Right)	29.75	28.31	29.42	38.11	-84.46	38.11	63.30
P_{D}					-30.38	-30.44	-65.32
P_{L}					-28.96	-29.02	-62.25
P_{E}					2.25	-1.94	0.19
$\mathrm{P}_{\text {E,Reversed }}$					-1.94	2.25	-0.42
M_{D} (Midspan)	93.96	84.49	84.49	93.91			
M_{L} (Midspan)	89.56	80.53	80.53	89.51			
M_{E} (Midspan)	2.12	0.13	0.30	-1.33			
$M_{\text {E,ReVersed }}$ (Midspan)	-1.33	0.30	0.13	2.12			
			1.2D	0E + 1.0L			
Max $\mathrm{V}_{\text {Top/LEFT }}(\mathrm{kips}$)	-67.36	-70.54	-70.21	-73.97	-51.89	-52.65	19.93
Max $\mathrm{V}_{\text {bottom/RIGHt }}$ (kips)	74.10	70.32	70.65	67.49	-51.89	-52.65	19.93
Max M ${ }_{\text {TOP/LEFT }}$ (ft -kips)	-327.72	-397.32	-392.24	-430.14	327.72	-398.52	122.62
Max M ${ }_{\text {BOtтом/RIGHt }}$ (ft-kips)	-432.13	-393.92	-399.10	-329.93	-217.02	176.51	-71.12
Max M MIdspan (ft-kips)	204.43	182.21	182.21	204.32			
Max P_{u} (kips)					-67.36	-67.49	-141.05
				+1.6L			
Max $\mathrm{V}_{\text {TOP/LEFT }}(\mathrm{kips}$)	-82.79	-87.06	-86.54	-90.77	-51.58	-52.54	4.64
Max $\mathrm{V}_{\text {Bоtтом/RIGHt }}$ (kips)	90.94	86.68	87.20	82.96	-51.58	-52.54	4.64
Max $\mathrm{M}_{\text {TOP/LEFT }}$ (ft -kips)	-373.74	-467.76	-459.47	-501.50	373.74	-376.56	31.47
Max $\mathrm{M}_{\text {BOTtом/RIGHT }}$ (ft-kips)	-504.04	-461.65	-470.03	-376.56	-167.72	175.18	-17.26
Max $\mathrm{M}_{\text {MIDSPAN }}$ (ft -kips)	256.05	230.24	230.24	255.91			
$\operatorname{Max} \mathrm{P}_{\mathrm{u}}$ (kips)					-82.80	-82.96	-177.98

Tables Account for Torsional Effects

BEAM DESIGN:

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{u}, \max }=90.94 \mathrm{kips}(1.2 \mathrm{D}+1.6 \mathrm{~L}) \\
& \mathrm{M}_{\mathrm{u}, \max } \text { at Supports }=504.04 \mathrm{k} \mathrm{-ft}(1.2 \mathrm{D}+1.6 \mathrm{~L}) \\
& \mathrm{M}_{\mathrm{u}, \text { max }} \text { at Midspan }=256.05 \mathrm{k}-\mathrm{ft}(1.2 \mathrm{D}+1.6 \mathrm{~L})
\end{aligned}
$$

Use normal-weight concrete with $\mathrm{f}^{\prime}{ }_{\mathrm{c}}=4000 \mathrm{psi}$
$\mathrm{f}_{\mathrm{y}}=60,000 \mathrm{psi}$ for flexural reinforcement
$\mathrm{f}_{\mathrm{yt}}=60,000 \mathrm{psi}$ for stirrups

1) Choose the actual size of the beam stem.

a) Calculate the minimum depth based on deflections.

Use worst case scenario (one-end continuous instead of both ends continuous).
ACI Table 9.5(a):
Minimum thickness, $\mathrm{h}=\mathrm{L} / 18.5=\left[\left(32^{\prime}\right)(12 \mathrm{in} / \mathrm{ft})\right] / 18.5=20.76^{\prime \prime}$
b) Determine the minimum depth based on the maximum negative moment.
$\mathrm{M}_{\mathrm{u}, \text { max }}$ at Supports $=504.04 \mathrm{k}-\mathrm{ft}$
$\rho($ initial $)=\left[\left(\beta_{1} \mathrm{f}^{\prime} \mathrm{c}\right) /\left(4 \mathrm{f}_{\mathrm{y}}\right)\right]=[(0.85)(4 \mathrm{ksi}) /(4)(60 \mathrm{ksi})]=0.0142$
$\omega=\rho\left(\mathrm{f}_{\mathrm{y}} / \mathrm{f}^{\prime}{ }_{\mathrm{c}}\right)=(0.0142)(60 \mathrm{ksi} / 4 \mathrm{ksi})=0.213$
$\mathrm{R}=\omega \mathrm{f} \mathrm{c}(1-0.59 \omega)=(0.213)(4 \mathrm{ksi})[1-(0.59)(0.213)]=0.745 \mathrm{ksi}$
$\mathrm{bd}^{2} \geq \mathrm{M}_{\mathrm{u}} / \phi \mathrm{R}=[(504.04 \mathrm{ft}-\mathrm{kips})(12 \mathrm{in} / \mathrm{ft})] /[(0.9)(0.745 \mathrm{ksi})]=9020.85 \mathrm{in}^{3}$
Assuming $\mathrm{b}=24 \mathrm{in}$.

$$
\mathrm{d} \geq 19.39 \text { in. }
$$

$\mathrm{h} \cong 19.39^{\prime \prime}+3.25^{\prime \prime}=22.64$ " (accounting for $2.25^{\prime \prime}$ clear cover due to corrosive environment; see ACI 7.7.6.1; (1.5)(1.5") $\left.=2.25^{\prime \prime}\right)$

Try h $=26^{\prime \prime}>20.76 " \therefore$ Meets deflection criteria

$$
d \cong 26^{\prime \prime}-3.25^{\prime \prime}=22.75^{\prime \prime}
$$

c) Check the shear capacity of the beam.

$$
\mathrm{V}_{\mathrm{u}}=\phi\left(\mathrm{V}_{\mathrm{c}}+\mathrm{V}_{\mathrm{s}}\right)
$$

$$
\mathrm{V}_{\mathrm{u}, \max }=90.94 \mathrm{kips}
$$

From ACI Code Section 11.2.1.1, the nominal V_{c} is

$$
V_{c}=2 \lambda \sqrt{ } f^{\prime}{ }_{c} b_{w} d=(2)(1.0) \sqrt{ } 4000 \operatorname{psi}(24 ")(22.75 ") / 1000=69.06 \mathrm{kips}
$$

ACI Code Section 11.4.7.9 sets the maximum nominal V_{s} as

Thus, the absolute maximum $\phi \mathrm{V}_{\mathrm{n}}=0.75(69.06 \mathrm{k}+276.26 \mathrm{k})=258.99 \mathrm{kips}$

$$
\geq \mathrm{V}_{\mathrm{u}, \max }=90.94 \text { kips } \therefore \text { OK }
$$

d) Summary. Use:
b $=24^{\prime \prime}$
$\mathrm{h}=26^{\prime \prime}$
$\mathrm{d}=22.75^{\prime \prime}$

2) Compute the dead load of the stem, and recompute the total moment.

Weight of $24 " \times 26^{\prime \prime}$ concrete beam $=\left[(24 ")\left(26^{\prime \prime}\right) / 144 \mathrm{in}^{2} / \mathrm{ft}^{2}\right]\left[\left(150 \mathrm{lb} / \mathrm{ft}^{3}\right) / 1000\right]$

$$
=0.650 \mathrm{k} / \mathrm{ft}
$$

Original dead load $=1.9923 \mathrm{k} / \mathrm{ft}$

New dead load $=1.9923 \mathrm{k} / \mathrm{ft}+(0.650 \mathrm{k} / \mathrm{ft}-0.375 \mathrm{k} / \mathrm{ft})=2.2673 \mathrm{k} / \mathrm{ft}$
$(2.2673 \mathrm{k} / \mathrm{ft}) /(1.9923 \mathrm{k} / \mathrm{ft})=1.1380$

New $\mathrm{M}_{\mathrm{u}, \max }$ at Supports $\cong(1.2)(-184.95 \mathrm{k}-\mathrm{ft} * 1.1380)+(1.6)(-176.31 \mathrm{k}-\mathrm{ft})=534.66 \mathrm{k}-\mathrm{ft}$

New $\mathrm{M}_{\mathrm{u}, \max }$ at Midspan $\cong(1.2)\left(93.96 \mathrm{k}-\mathrm{ft}^{*} 1.1380\right)+(1.6)(89.56 \mathrm{k}-\mathrm{ft})=271.61 \mathrm{k}-\mathrm{ft}$

New $\mathrm{V}_{\mathrm{u}, \max } \cong(1.2)(33.37 \mathrm{k} * 1.1380)+(1.6)(31.81 \mathrm{k})=96.47 \mathrm{k}<\phi \mathrm{V}_{\mathrm{n}}=258.99 \mathrm{kips}$
\therefore Shear capacity is still OK.

3) Design the flexural reinforcement.

a) Compute the area of steel required at the point of maximum negative moment.
$A_{s} \geq M_{u} /\left[\phi f_{y}(d-a / 2)\right] \cong M_{u} /\left[\phi f_{y}(j d)\right]$
Because there is negative moment at the support, the beams acts as a rectangular beam with compression in the web. Assume that $\mathrm{j}=0.9$ and $\phi=0.90$

$$
\mathrm{A}_{\mathrm{s}} \cong(534.66 \mathrm{k}-\mathrm{ft})(12 \mathrm{in} / \mathrm{ft}) /\left[(0.9)(60 \mathrm{ksi})(0.9)\left(22.75^{\prime}\right)\right]=5.80 \mathrm{in}^{2}
$$

This value can be improved with one iteration to find the depth of the compression stress block, a:

$$
\mathrm{a}=\mathrm{A}_{\mathrm{s}} \mathrm{f}_{\mathrm{y}} / 0.85 \mathrm{f}^{\prime}{ }_{\mathrm{c}} \mathrm{~b}=\left(5.80 \mathrm{in}^{2}\right)(60 \mathrm{ksi}) /[(0.85)(4 \mathrm{ksi})(24 ")]=4.267 "
$$

and then recalculating the required A_{s} with this calculated value of a :

$$
\begin{aligned}
\mathrm{A}_{\mathrm{s}} \geq \mathrm{M}_{\mathrm{u}} /\left[\phi \mathrm{f}_{\mathrm{y}}(\mathrm{~d}-\mathrm{a} / 2)\right]= & (534.66 \mathrm{k}-\mathrm{ft})(12 \mathrm{in} / \mathrm{ft}) /\left[(0.9)(60 \mathrm{ksi})\left(22.75^{\prime \prime}-4.267^{\prime \prime} / 2\right)\right] \\
= & 5.76 \mathrm{in}^{2}
\end{aligned}
$$

Before proceeding, it must be confirmed that this is a tension-controlled section. This can be done by showing that the neutral axis, c , is less than $3 / 8$ of d .

$$
\begin{aligned}
& \mathrm{a}=\mathrm{A}_{\mathrm{s}} \mathrm{f}_{\mathrm{y}} / 0.85 \mathrm{f}^{\prime}{ }_{\mathrm{c}} \mathrm{~b}=\left(5.76 \mathrm{in}^{2}\right)(60 \mathrm{ksi}) /[(0.85)(4 \mathrm{ksi})(24 ")]=4.238^{\prime \prime} \\
& \mathrm{c}=\mathrm{a} / \beta_{1}=4.238^{\prime \prime} / 0.85=4.985^{\prime \prime}<(3 / 8)(\mathrm{d})=(3 / 8)\left(22.75^{\prime \prime}\right)=8.531 "
\end{aligned}
$$

\therefore Section is tension-controlled and can be designed using $\phi=0.90$
b) Compute the area of steel required at the point of maximum positive moment.

$$
A_{s} \geq M_{u} /\left[\phi f_{\mathrm{y}}(\mathrm{~d}-\mathrm{a} / 2)\right] \cong \mathrm{M}_{\mathrm{u}} /\left[\phi \mathrm{f}_{\mathrm{y}}(\mathrm{jd})\right]
$$

Assume that the compression zone is rectangular, and take $\mathrm{j}=0.95$ for the first calculation of A_{s}.

$$
\mathrm{A}_{\mathrm{s}} \cong(271.61 \mathrm{k}-\mathrm{ft})(12 \mathrm{in} / \mathrm{ft}) /\left[(0.9)(60 \mathrm{ksi})(0.95)\left(22.75^{\prime \prime}\right)\right]=2.79 \mathrm{in} .^{2}
$$

This value can be improved with one iteration to find the depth of the compression stress block, a:

$$
\mathrm{a}=\mathrm{A}_{\mathrm{s}} \mathrm{f}_{\mathrm{y}} / 0.85 \mathrm{f}^{\prime}{ }_{\mathrm{c}} \mathrm{~b}=\left(2.79 \mathrm{in}^{2}\right)(60 \mathrm{ksi}) /[(0.85)(4 \mathrm{ksi})(24 ")]=2.053 "
$$

and then recalculating the required A_{s} with this calculated value of a :

$$
\begin{aligned}
\mathrm{A}_{\mathrm{s}} \geq \mathrm{M}_{\mathrm{u}} /\left[\phi \mathrm{f}_{\mathrm{y}}(\mathrm{~d}-\mathrm{a} / 2)\right]= & (271.61 \mathrm{k}-\mathrm{ft})(12 \mathrm{in} / \mathrm{ft}) /\left[(0.9)(60 \mathrm{ksi})\left(22.75 "-2.053^{\prime \prime} / 2\right)\right] \\
& =2.78 \mathrm{in}^{2}
\end{aligned}
$$

Before proceeding, it must be confirmed that this is a tension-controlled section. This can be done by showing that the neutral axis, c , is less than $3 / 8$ of d .

$$
\begin{aligned}
& \mathrm{a}=\mathrm{A}_{\mathrm{s}} \mathrm{f}_{\mathrm{y}} / 0.85 \mathrm{f}^{\prime} \mathrm{c}=\left(2.78 \mathrm{in}^{2}\right)(60 \mathrm{ksi}) /\left[(0.85)(4 \mathrm{ksi})\left(24^{\prime \prime}\right)\right]=2.043 " \\
& \mathrm{c}=\mathrm{a} / \beta_{1}=2.043^{\prime \prime} / 0.85=2.404^{\prime \prime}<(3 / 8)(\mathrm{d})=(3 / 8)\left(22.75^{\prime \prime}\right)=8.531 "
\end{aligned}
$$

$$
\therefore \text { Section is tension-controlled and can be designed using } \phi=0.90
$$

c) Calculate the minimum reinforcement (using ACI Code Section 10.5.1).

$$
\begin{aligned}
& \mathrm{A}_{\mathrm{s}, \text { min }}=\text { max. of: } \\
& \quad\left[3 \sqrt{ } \mathrm{f}_{\mathrm{c}}{ }_{\mathrm{d}} \mathrm{f}_{\mathrm{y}}\right] \mathrm{b}_{\mathrm{w}} \mathrm{~d}=[3 \sqrt{ } 4000 \mathrm{psi} / 60000 \mathrm{psi}]\left(24^{\prime \prime}\right)\left(22.75^{\prime \prime}\right)=1.73 \mathrm{in}^{2} \\
& 200 \mathrm{~b}_{\mathrm{w}} \mathrm{~d} / \mathrm{f}_{\mathrm{y}}=(200)\left(24^{\prime \prime}\right)\left(22.75^{\prime \prime}\right) / 60000 \mathrm{psi}=1.82 \mathrm{in}^{2} \\
& \quad \therefore \mathrm{~A}_{\mathrm{s}, \text { min }}=1.82 \mathrm{in}^{2}
\end{aligned}
$$

4) Calculate the area of steel and select the bars.
a) Negative-moment Region
$\mathrm{A}_{\mathrm{s}, \text { req }}=5.76 \mathrm{in}^{2}>\mathrm{A}_{\mathrm{s}, \text { min }}=1.82 \mathrm{in}^{2} \therefore \mathrm{OK}$
Use (10) \#7 bars $\left[\mathrm{A}_{\mathrm{s}}=(10)\left(0.60 \mathrm{in}^{2}\right)=6.00 \mathrm{in}^{2}>5.76 \mathrm{in}^{2} \therefore \mathrm{OK}\right]$
Small bars were selected at the supports because the bars have to be hooked into the exterior supports and there may not be enough room for a standard hook on larger bars.
b) Positive-moment Region
$\mathrm{A}_{\mathrm{s}, \text { req }}=2.78 \mathrm{in}^{2}>\mathrm{A}_{\mathrm{s}, \text { min }}=1.82 \mathrm{in}^{2} \therefore \mathrm{OK}$
Use (5) \#7 bars $\left[\mathrm{A}_{\mathrm{s}}=(5)\left(0.60 \mathrm{in}^{2}\right)=3.00 \mathrm{in}^{2}>2.78 \mathrm{in}^{2} \therefore \mathrm{OK}\right]$
5) Check the distribution of the reinforcement (spacing requirements).
a) Negative-moment Region
$\mathrm{c}_{\mathrm{c}}=2.25$ in. cover +0.5 in. stirrups $=2.75$ "
The maximum bar spacing is

$$
\begin{aligned}
& s=15\left(40,000 / f_{s}\right)-2.5 c_{c} \\
& f_{s}=(2 / 3)\left(f_{y}\right)=(2 / 3)(60,000 \mathrm{ksi})=40,000 \mathrm{ksi} \\
& s=15(40,000 / 40,000)-(2.5)\left(2.75^{\prime \prime}\right)=8.125^{\prime \prime}
\end{aligned}
$$

Spacing of bars is less than $8.125^{\prime \prime}$ by inspection.
Minimum bar spacing:

$$
\mathrm{s}_{\mathrm{c}}=\max \text { of }\left[1 ", \mathrm{~d}_{\mathrm{b}},(4 / 3) \mathrm{s}_{\mathrm{a}}\right] ; \text { Assume } \mathrm{s}_{\mathrm{a}}=1 " \text { aggregate }
$$

$$
\begin{aligned}
& \mathrm{s}_{\mathrm{c}}=\max \text { of }[1 ", 0.875 ",(4 / 3)(1 ")=1.333 "] ; \text { Assume } \mathrm{s}_{\mathrm{a}}=1 " \text { aggregate } \\
& \mathrm{s}_{\mathrm{c}}=1.333 "
\end{aligned}
$$

Side spacing and cover:

$$
\begin{aligned}
& \mathrm{b}>(\mathrm{n})\left(\mathrm{d}_{\mathrm{b}}\right)+(\mathrm{n}-1)\left(\mathrm{s}_{\mathrm{c}}\right)+2 \mathrm{~d}_{\mathrm{tr}}+2 \mathrm{c}_{\mathrm{c}} \\
& 24 ">(10)(0.875 ")+(10-1)(1.333 ")+(2)(0.5 ")+(2)(2.25 ")
\end{aligned}
$$

$24 "<26.25$ " \therefore Need two rows of reinforcing in negative-moment regions
Minimum vertical spacing between layers of reinforcement
$=$ max. of: $(4 / 3)\left(\mathrm{s}_{\mathrm{a}}\right)$ or 1 "
$=\max \cdot$ of $(4 / 3)\left(1^{\prime \prime}\right)=1.333^{\prime \prime}$, or $1 "$
$=1.333^{\prime \prime}$
New $d_{\text {eff }}=26^{\prime \prime}-2.25^{\prime \prime}-0.5^{\prime \prime}-0.875^{\prime \prime}-(1 / 2)\left(1.333^{\prime \prime}\right)=21.708^{\prime \prime}$

1) Re-check the shear capacity of the beam with $d=21.708$ ".
$\mathrm{V}_{\mathrm{u}}=\phi\left(\mathrm{V}_{\mathrm{c}}+\mathrm{V}_{\mathrm{s}}\right)$
$\mathrm{V}_{\mathrm{u}, \max }=96.47 \mathrm{kips}$
From ACI Code Section 11.2.1.1, the nominal V_{c} is

$$
\mathrm{V}_{\mathrm{c}}=2 \lambda \sqrt{ } \mathrm{f}^{\prime}{ }_{\mathrm{c}} \mathrm{~b}_{\mathrm{w}} \mathrm{~d}=(2)(1.0) \sqrt{ } 4000 \mathrm{psi}(24 ")(21.708 ") / 1000=65.90 \mathrm{kips}
$$

ACI Code Section 11.4.7.9 sets the maximum nominal V_{s} as

$$
\mathrm{V}_{\mathrm{s}}=8 \sqrt{ } \mathrm{f}^{\prime} \mathrm{c}_{\mathrm{w}} \mathrm{~d}=(8) \sqrt{ } 4000 \mathrm{psi}\left(24^{\prime \prime}\right)\left(21.708^{\prime}\right) / 1000=263.60 \mathrm{kips}
$$

Thus, the absolute maximum $\phi \mathrm{V}_{\mathrm{n}}=0.75(65.90 \mathrm{k}+263.60 \mathrm{k})=247.13 \mathrm{kips}$

$$
\geq \mathrm{V}_{\mathrm{u}, \text { max }}=96.47 \mathrm{kips} \therefore \text { OK }
$$

Shear capacity is OK when accounting for weight of 24 " $\times 26$ " beam.

2) Re-design the flexural reinforcement with $\mathrm{d}=21.708$ ".

a) Compute the area of steel required at the point of maximum negative moment.

$$
\mathrm{A}_{\mathrm{s}} \geq \mathrm{M}_{\mathrm{u}} /\left[\phi \mathrm{f}_{\mathrm{y}}(\mathrm{~d}-\mathrm{a} / 2)\right] \cong \mathrm{M}_{\mathrm{u}} /\left[\phi \mathrm{f}_{\mathrm{y}}(\mathrm{jd})\right]
$$

Because there is negative moment at the support, the beams acts as a rectangular
beam with compression in the web. Assume that $\mathrm{j}=0.9$ and $\phi=0.90$

$$
\mathrm{A}_{\mathrm{s}} \cong(534.66 \mathrm{k}-\mathrm{ft})(12 \mathrm{in} / \mathrm{ft}) /\left[(0.9)(60 \mathrm{ksi})(0.9)\left(21.708^{\prime \prime}\right)\right]=6.08 \mathrm{in} .^{2}
$$

This value can be improved with one iteration to find the depth of the compression stress block, a:
$\mathrm{a}=\mathrm{A}_{\mathrm{s}} \mathrm{f}_{\mathrm{y}} / 0.85 \mathrm{f}^{\prime}{ }_{\mathrm{c}} \mathrm{b}=\left(6.08 \mathrm{in}^{2}\right)(60 \mathrm{ksi}) /[(0.85)(4 \mathrm{ksi})(24 ")]=4.472^{\prime \prime}$
and then recalculating the required A_{s} with this calculated value of a :

$$
\begin{aligned}
\mathrm{A}_{\mathrm{s}} \geq \mathrm{M}_{\mathrm{u}} /\left[\phi \mathrm{f}_{\mathrm{y}}(\mathrm{~d}-\mathrm{a} / 2)\right]= & (534.66 \mathrm{k}-\mathrm{ft})(12 \mathrm{in} / \mathrm{ft}) /\left[(0.9)(60 \mathrm{ksi})\left(21.708^{\prime}-4.472 " / 2\right)\right] \\
& =6.10 \mathrm{in}^{2}
\end{aligned}
$$

Before proceeding, it must be confirmed that this is a tension-controlled section. This can be done by showing that the neutral axis, c , is less than $3 / 8$ of d .

$$
\begin{aligned}
& \mathrm{a}=\mathrm{A}_{\mathrm{s}} \mathrm{f}_{\mathrm{y}} / 0.85 \mathrm{f}^{\prime}{ }_{\mathrm{c}} \mathrm{~b}=\left(6.10 \mathrm{in}^{2}\right)(60 \mathrm{ksi}) /[(0.85)(4 \mathrm{ksi})(24 ")]=4.487^{\prime \prime} \\
& \mathrm{c}=\mathrm{a} / \beta_{1}=4.487^{\prime \prime} / 0.85=5.278^{\prime \prime}<(3 / 8)(\mathrm{d})=(3 / 8)\left(21.708^{\prime \prime}\right)=8.141 "
\end{aligned}
$$

\therefore Section is tension-controlled and can be designed using $\phi=0.90$
b) Compute the area of steel required at the point of maximum positive moment.

$$
A_{s} \geq M_{u} /\left[\phi f_{y}(d-a / 2)\right] \cong M_{u} /\left[\phi f_{y}(j d)\right]
$$

Assume that the compression zone is rectangular, and take $j=0.95$ for the first calculation of A_{s}.

$$
\mathrm{A}_{\mathrm{s}} \cong(271.61 \mathrm{k}-\mathrm{ft})(12 \mathrm{in} / \mathrm{ft}) /\left[(0.9)(60 \mathrm{ksi})(0.95)\left(21.708^{\prime \prime}\right)\right]=2.93 \mathrm{in}^{2}
$$

This value can be improved with one iteration to find the depth of the compression stress block, a:

$$
\mathrm{a}=\mathrm{A}_{\mathrm{s}} \mathrm{f}_{\mathrm{y}} / 0.85 \mathrm{f}^{\prime}{ }_{\mathrm{c}} \mathrm{~b}=\left(2.93 \mathrm{in}^{2}\right)(60 \mathrm{ksi}) /[(0.85)(4 \mathrm{ksi})(24 ")]=2.154 "
$$

and then recalculating the required A_{s} with this calculated value of a :

$$
\begin{aligned}
\mathrm{A}_{\mathrm{s}} \geq \mathrm{M}_{\mathrm{u}} /\left[\phi \mathrm{f}_{\mathrm{y}}(\mathrm{~d}-\mathrm{a} / 2)\right]= & (271.61 \mathrm{k}-\mathrm{ft})(12 \mathrm{in} / \mathrm{ft}) /\left[(0.9)(60 \mathrm{ksi})\left(21.708^{\prime \prime}-2.154 " / 2\right)\right] \\
& =2.93 \mathrm{in}^{2}
\end{aligned}
$$

Before proceeding, it must be confirmed that this is a tension-controlled section. This can be done by showing that the neutral axis, c , is less than $3 / 8$ of d .

$$
\mathrm{a}=\mathrm{A}_{\mathrm{s}} \mathrm{f}_{\mathrm{y}} / 0.85 \mathrm{f}^{\prime}{ }_{\mathrm{c}} \mathrm{~b}=\left(2.93 \mathrm{in}^{2}\right)(60 \mathrm{ksi}) /\left[(0.85)(4 \mathrm{ksi})\left(24^{\prime \prime}\right)\right]=2.151 "
$$

$$
\mathrm{c}=\mathrm{a} / \beta_{1}=2.151 " / 0.85=2.531 "<(3 / 8)(\mathrm{d})=(3 / 8)(21.708 ")=8.141^{\prime \prime}
$$

\therefore Section is tension-controlled and can be designed using $\phi=0.90$
c) Calculate the minimum reinforcement (using ACI Code Section 10.5.1).

$$
\begin{aligned}
& \mathrm{A}_{\mathrm{s}, \text { min }}=\text { max. of: } \\
& \quad\left[3 \sqrt{ } \mathrm{f}_{\mathrm{c}} / \mathrm{f}_{\mathrm{y}}\right] \mathrm{b}_{\mathrm{w}} \mathrm{~d}=[3 \sqrt{ } 4000 \mathrm{psi} / 60000 \mathrm{psi}]\left(24^{\prime \prime}\right)\left(21.708^{\prime \prime}\right)=1.65 \mathrm{in}^{2} \\
& 200 \mathrm{~b}_{\mathrm{w}} \mathrm{~d} / \mathrm{f}_{\mathrm{y}}=(200)\left(24^{\prime \prime}\right)\left(21.708^{\prime \prime}\right) / 60000 \mathrm{psi}=1.74 \mathrm{in}^{2} \\
& \quad \therefore \mathrm{~A}_{\mathrm{s}, \text { min }}=1.74 \mathrm{in}^{2}
\end{aligned}
$$

3) Re-calculate the area of steel and select the bars.

a) Negative-moment Region

$$
\mathrm{A}_{\mathrm{s}, \text { req }}=6.10 \mathrm{in}^{2}>\mathrm{A}_{\mathrm{s}, \min }=1.74 \mathrm{in}^{2} \therefore \mathrm{OK}
$$

Use (5) \#8 bars and (5) \#7 bars in two rows.

$$
\begin{aligned}
& \quad\left[\mathrm{A}_{\mathrm{s}}=(5)\left(0.79 \mathrm{in}^{2}\right)+(5)\left(0.60 \mathrm{in}^{2}\right)=6.95 \mathrm{in}^{2}>6.10 \mathrm{in}^{2} \therefore \mathrm{OK}\right] \\
& \mathrm{a}=\mathrm{A}_{\mathrm{s}} \mathrm{f}_{\mathrm{y}} / 0.85 \mathrm{f}^{\prime} \mathrm{c} \mathrm{~b}=(6.95 \mathrm{in} 2)(60 \mathrm{ksi}) /\left[(0.85)(4 \mathrm{ksi})\left(24^{\prime \prime}\right)\right]=5.110^{\prime \prime} \\
& \mathrm{a}=\beta_{1} \mathrm{c}=\text { where } \beta=0.85{\text { for } \mathrm{f}^{\prime}{ }_{\mathrm{c}}=4,000 \mathrm{psi}}^{\mathrm{c}=\mathrm{a} / \beta 1=5.110^{\prime \prime} / 0.85=6.012^{\prime \prime}} \\
& \mathrm{d}_{\text {actual }}=26^{\prime \prime}-2.25 "-0.5 "-1.0 "-(1 / 2)(1.333 ")=21.583 " \\
& \varepsilon_{\mathrm{s}}=(\mathrm{d}-\mathrm{c})\left(\varepsilon_{\mathrm{u}}\right) / \mathrm{c}=\left(21.583^{\prime \prime}-6.012^{\prime \prime}\right)(0.003) / 6.012^{\prime \prime}=0.00777>\varepsilon_{\mathrm{y}}=0.00207 \\
& \varepsilon_{\mathrm{t}} \cong \varepsilon_{\mathrm{s}}=0.00777>0.005 \therefore \text { Tension-controlled Section } \therefore \phi=0.9 \\
& \phi \mathrm{M}_{\mathrm{n}}=\phi \mathrm{A}_{\mathrm{s}} \mathrm{f}_{\mathrm{y}}(\mathrm{~d}-\mathrm{a} / 2)=(0.9)\left(6.95 \mathrm{in}^{2}\right)(60 \mathrm{ksi})\left(21.583 "-5.110^{\prime \prime} / 2\right) /(12 \mathrm{in} / \mathrm{ft})= \\
& \quad=595.10 \mathrm{k}-\mathrm{ft}>534.66 \mathrm{k}-\mathrm{ft} \therefore \mathrm{OK}
\end{aligned}
$$

Small bars were selected at the supports because the bars have to be hooked into the exterior supports and there may not be enough room for a standard hook on larger bars.
b) Positive-moment Region
$\mathrm{A}_{\mathrm{s}, \text { req }}=2.93 \mathrm{in}^{2}>\mathrm{A}_{\mathrm{s}, \text { min }}=1.74 \mathrm{in}^{2} \therefore \mathrm{OK}$
Use (5) \#7 bars in one row $\left[\mathrm{A}_{\mathrm{s}}=(5)\left(0.60 \mathrm{in}^{2}\right)=3.00 \mathrm{in}^{2}>2.93 \mathrm{in}^{2} \therefore \mathrm{OK}\right]$
*Using $\mathrm{d}=21.708^{\prime \prime}$ for positive-moment region was conservative since using only one row of rebar in this region (actual "d" for this region will be greater than 21.708")
$\mathrm{a}=\mathrm{A}_{\mathrm{s}} \mathrm{f}_{\mathrm{y}} / 0.85 \mathrm{f}^{\prime}{ }_{\mathrm{c}} \mathrm{b}=\left(3.00 \mathrm{in}^{2}\right)(60 \mathrm{ksi}) /\left[(0.85)(4 \mathrm{ksi})\left(24{ }^{\prime \prime}\right)\right]=2.206 "$
$\mathrm{a}=\beta_{1} \mathrm{c}=$ where $\beta=0.85$ for $\mathrm{f}^{\prime}{ }_{\mathrm{c}}=4,000 \mathrm{psi}$
$c=a / \beta 1=2.206^{\prime \prime} / 0.85=2.595^{\prime \prime}$
$\varepsilon_{\mathrm{s}} \cong(\mathrm{d}-\mathrm{c})\left(\varepsilon_{\mathrm{u}}\right) / \mathrm{c}=\left(21.708^{\prime \prime}-2.595^{\prime \prime}\right)(0.003) / 2.595 "=0.02210>\varepsilon_{\mathrm{y}}=0.00207$
(actual "d" for positive-moment region is larger since only have one row of reinforcement)
$\varepsilon_{\mathrm{t}} \cong \varepsilon_{\mathrm{s}}=0.02210>0.005 \therefore$ Tension-controlled Section $\therefore \phi=0.9$

$$
\begin{aligned}
\phi \mathrm{M}_{\mathrm{n}} & =\phi \mathrm{A}_{\mathrm{s}} \mathrm{f}_{\mathrm{y}}(\mathrm{~d}-\mathrm{a} / 2)=(0.9)\left(3.00 \mathrm{in}^{2}\right)(60 \mathrm{ksi})\left(21.708^{\prime \prime}-2.206^{\prime \prime} / 2\right) /(12 \mathrm{in} / \mathrm{ft})= \\
& =278.17 \mathrm{k}-\mathrm{ft}>271.61 \mathrm{k}-\mathrm{ft} \therefore \text { OK }
\end{aligned}
$$

5) Check the distribution of the reinforcement (spacing requirements).
a) Negative-moment Region
$c_{c}=2.25$ in. cover +0.5 in. stirrups $=2.75^{\prime \prime}$
The maximum bar spacing is:

$$
\begin{aligned}
& s=15\left(40,000 / f_{s}\right)-2.5 c_{c} \\
& f_{s}=(2 / 3)\left(f_{y}\right)=(2 / 3)(60,000 \mathrm{ksi})=40,000 \mathrm{ksi} \\
& s=15(40,000 / 40,000)-(2.5)\left(2.75^{\prime \prime}\right)=8.125^{\prime \prime}
\end{aligned}
$$

Spacing of bars is less than $8.125^{\prime \prime}$ by inspection.
Minimum bar spacing:

$$
\begin{aligned}
& \mathrm{s}_{\mathrm{c}}=\max \text { of }\left[1 ", \mathrm{~d}_{\mathrm{b}},(4 / 3) \mathrm{s}_{\mathrm{a}}\right] ; \text { Assume } \mathrm{s}_{\mathrm{a}}=1 " \text { aggregate } \\
& \mathrm{s}_{\mathrm{c}}=\max \text { of }\left[1 ", 0.875 ",(4 / 3)\left(1^{\prime \prime}\right)=1.333 "\right] ; \text { Assume } \mathrm{s}_{\mathrm{a}}=1 " \text { aggregate } \\
& \mathrm{s}_{\mathrm{c}}=1.333^{\prime \prime}
\end{aligned}
$$

Side spacing and cover:

$$
\mathrm{b}>(\mathrm{n})\left(\mathrm{d}_{\mathrm{b}}\right)+(\mathrm{n}-1)\left(\mathrm{s}_{\mathrm{c}}\right)+2 \mathrm{~d}_{\mathrm{tr}}+2 \mathrm{c}_{\mathrm{c}}
$$

$$
\begin{aligned}
& 18^{\prime \prime}>(5)(1.00 ")+(5-1)(1.333 ")+(2)(0.5 ")+(2)(2.25 ") \\
& 24 ">15.83 " \therefore \text { OK }
\end{aligned}
$$

b) Positive-moment Region

The maximum bar spacing is $8.125^{\prime \prime}$. Spacing of bars is less than $8.125^{\prime \prime}$ by inspection.

Minimum bar spacing $=1.333 "$

Side spacing and cover:

$$
\begin{aligned}
& \mathrm{b}>(\mathrm{n})\left(\mathrm{d}_{\mathrm{b}}\right)+(\mathrm{n}-1)\left(\mathrm{s}_{\mathrm{c}}\right)+2 \mathrm{~d}_{\mathrm{tr}}+2 \mathrm{c}_{\mathrm{c}} \\
& 24^{\prime \prime}>(5)\left(0.875^{\prime \prime}\right)+(5-1)\left(1.333^{\prime \prime}\right)+(2)\left(0.5^{\prime \prime}\right)+(2)\left(2.25^{\prime \prime}\right) \\
& 24^{\prime \prime}>15.21^{\prime \prime} \therefore \text { OK }
\end{aligned}
$$

6) Design the shear reinforcement.

a) The critical section for shear is located at the support. ACI Code Section 11.4.6.1 requires stirrups if $\mathrm{V}_{\mathrm{u}} \geq \phi \mathrm{V}_{\mathrm{c}} / 2$

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{c}}=2 \lambda \sqrt{ } \mathrm{f}^{\prime}{ }_{\mathrm{c}} \mathrm{~b}_{\mathrm{w}} \mathrm{~d}=(2)(1.0) \sqrt{ } 4000 \mathrm{psi}\left(24^{\prime \prime}\right)\left(21.708^{\prime}\right) / 1000=65.90 \mathrm{kips} \\
& \mathrm{~V}_{\mathrm{c}} / 2=65.90 \mathrm{kips} / 2=32.95 \mathrm{kips} \\
& \mathrm{~V}_{\mathrm{u}} / \phi=(96.47 \mathrm{kips}) /(0.75)=128.63 \mathrm{kips}>\mathrm{V}_{\mathrm{c}} / 2=32.95 \mathrm{kips}
\end{aligned}
$$

\therefore Stirrups are required.
b) Determine shear strength required by shear reinforcing.

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{s}}=\mathrm{V}_{\mathrm{u}} / \phi-\mathrm{V}_{\mathrm{c}}=[(96.47 \mathrm{kips}) /(0.75)]-65.90 \mathrm{kips}=62.73 \mathrm{kips} \\
& \mathrm{~V}_{\mathrm{s}} \leq 8 \sqrt{\mathrm{f}}^{\prime}{ }_{\mathrm{c}} \mathrm{~b}_{\mathrm{w}} \mathrm{~d}=8 \sqrt{ } 4000 \mathrm{psi}(24 ")\left(21.708^{\prime \prime}\right) / 1000=263.60 \mathrm{kips} \therefore \text { OK }
\end{aligned}
$$

c) Determine maximum spacing of shear reinforcing (ACI 318-08 Sections 11.4.5.1 and 11.4.5.3).

$$
\begin{aligned}
& \text { For } V_{s} \leq 8 V^{\prime}{ }_{\mathrm{c}}{ } \mathrm{~b}_{\mathrm{w}} \mathrm{~d}: \mathrm{s}_{\max }=\min \text { of }\left\{\mathrm{d} / 2,24^{\prime \prime}\right\} \\
& \mathrm{d} / 2=21.708^{\prime \prime} / 2=10.854 " \\
& \mathrm{~s}_{\max }=10 "
\end{aligned}
$$

d) Determine minimum shear reinforcement (ACI 318-08 Section 11.4.6.3).
$\mathrm{A}_{\mathrm{v}, \min }=\max$ of $\left\{0.75 \sqrt{ } \mathrm{f}^{\prime} \mathrm{c}_{\mathrm{w}} / \mathrm{f}_{\mathrm{yt}}, 50 \mathrm{~b}_{\mathrm{w}} / \mathrm{f}_{\mathrm{yt}}\right\}$
$0.75 \sqrt{ }{ }^{\prime}{ }^{\prime} \mathrm{b}_{\mathrm{w}} / \mathrm{f}_{\mathrm{yt}}=0.75 \sqrt{ } 4000 \mathrm{psi}(24 ")(10 ") / 60,000 \mathrm{psi}=0.190 \mathrm{in}^{2}$
$50 \mathrm{~b}_{\mathrm{w}} / \mathrm{f}_{\mathrm{yt}}=50\left(24\right.$ ") $\left(10^{\prime \prime}\right) / 60,000 \mathrm{psi}=0.200 \mathrm{in}^{2}$
$\therefore \mathrm{A}_{\mathrm{v}, \text { min }}=0.200 \mathrm{in}^{2}$
Use \#3 stirrups @ 10" as minimum shear reinforcement.
$\left(\mathrm{A}_{\mathrm{v}}=2\right.$ legs $\mathrm{x} 0.11 \mathrm{in}^{2} /$ leg $\left.=0.22 \mathrm{in}^{2}>0.200 \mathrm{in}^{2} \therefore \mathrm{OK}\right)$
e) Design the shear reinforcement.
$\mathrm{V}_{\mathrm{s}}=\mathrm{A}_{\mathrm{v}} \mathrm{f}_{\mathrm{yt}} \mathrm{d} / \mathrm{s}$
Rearranging: $\mathrm{s}=\mathrm{A}_{\mathrm{v}} \mathrm{f}_{\mathrm{yt}} \mathrm{d} / \mathrm{V}_{\mathrm{s}}=\left(0.22 \mathrm{in}^{2}\right)(60 \mathrm{ksi})\left(21.708^{\prime \prime}\right) / 62.73 \mathrm{kips}=4.57 "$
Usually absolute minimum " s " is 4 ".
Use (2) \#3 stirrups @ 4", starting 2" from face of support.
Or use \#4 stirrups instead of \#3 stirrups.
For \#4 stirrups: $\left(\mathrm{A}_{\mathrm{v}}=2\right.$ legs $\left.\mathrm{x} 0.20 \mathrm{in}^{2} / \mathrm{leg}=0.40 \mathrm{in}^{2}>0.200 \mathrm{in}^{2} \therefore \mathrm{OK}\right)$
$\mathrm{s}=\mathrm{A}_{\mathrm{v}} \mathrm{f}_{\mathrm{yt}} \mathrm{d} / \mathrm{V}_{\mathrm{s}}=\left(0.40 \mathrm{in}^{2}\right)(60 \mathrm{ksi})\left(21.708^{\prime \prime}\right) / 62.73 \mathrm{kips}=8.305^{\prime \prime}$
Use (2) \#4 stirrups @ 8 ", starting 2" from face of support.
Use this stirrup layout throughout the entire length of the beam since lateral loads can change the shear forces (shear diagram) throughout the beam length (since the beam is part of a concrete moment frame).

FINAL DESIGN: Use 24" x 26" beam with (5) \#8 and (5) \#7 bars for negative moment reinforcement (at the supports) and (5) \#7 bars for positive moment reinforcement. Use (2) \#4 stirrups @ 8 " throughout length of beam.

COLUMN DESIGN:

Load Case 1: 1.2D + 1.6L (Gravity Load Case)

Exterior Column:

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{u}}=177.98 \mathrm{kips} \\
& \mathrm{M}_{2}=31.47 \mathrm{k}-\mathrm{ft} \\
& \mathrm{M}_{1}=-17.26 \mathrm{k}-\mathrm{ft}
\end{aligned}
$$

1) Preliminary column size

$$
\begin{aligned}
& \mathrm{A}_{\mathrm{g}(\text { trial })} \geq \mathrm{P}_{\mathrm{u}} /\left[0.40\left(\mathrm{f}_{\mathrm{c}}{ }^{\prime}+\mathrm{f}_{\mathrm{y}} \rho_{\mathrm{g}}\right)\right. \\
& \mathrm{A}_{\mathrm{g}(\text { (trial })} \geq 177.98 \mathrm{kips} /[0.40(4 \mathrm{ksi}+(60 \mathrm{ksi})(0.015))]=90.81 \mathrm{in}^{2} \\
& \cong(9.53 \mathrm{in} .)^{2} \\
& \text { Try } 18 " \times 18 " \text { column }
\end{aligned}
$$

2) Is the story being designed sway or nonsway?

$$
\begin{aligned}
& \mathrm{Q}=\left[\sum \mathrm{P}_{\mathrm{u}} \times \Delta_{\mathrm{o}}\right] /\left[\mathrm{V}_{\mathrm{us}} \times 1_{\mathrm{c}}\right] \\
& \sum \mathrm{P}_{\mathrm{u}} \cong(5)(177.98 \mathrm{k})=889.90 \mathrm{k} \\
& \mathrm{~V}_{\mathrm{us}}=1 \mathrm{kip} \\
& \Delta_{\mathrm{o}}=0.017769^{\prime \prime} \\
& 1_{\mathrm{c}}=10.5^{\prime}=126^{\prime \prime} \\
& \mathrm{Q}=\left[(889.90 \mathrm{kips})\left(0.017769^{\prime \prime}\right)\right] /\left[(1 \mathrm{kip})\left(126^{\prime \prime}\right)\right]=0.02002<0.05
\end{aligned}
$$

\therefore Nonsway (but assume sway story because $\sum \mathrm{P}_{\mathrm{u}}$ will actually be higher due to loads at other columns around the building at that level)

3) Are the columns slender?

$$
\begin{aligned}
& \mathrm{r}=0.3 \mathrm{~h}=(0.3)\left(18^{\prime \prime}\right)=5.4 " \\
& \mathrm{kl}_{\mathrm{u}} / \mathrm{r}=(1.2)\left(126^{\prime \prime}\right) / 5.4^{\prime \prime}=28>22 \therefore \text { Column is slender }
\end{aligned}
$$

4) Find $\delta_{\text {ns }}$ for the column.

$$
\delta_{\mathrm{ns}}=\mathrm{C}_{\mathrm{m}} /\left[1-\left(\mathrm{P}_{\mathrm{u}} /\left(0.75 \mathrm{P}_{\mathrm{c}}\right)\right)\right] \geq 1.0
$$

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{m}}=0.6+0.4\left(\mathrm{M}_{1} / \mathrm{M}_{2}\right)=0.6+0.4(-17.26 \mathrm{k}-\mathrm{ft} / 31.47 \mathrm{k}-\mathrm{ft})=0.3806 \\
& \mathrm{P}_{\mathrm{c}}=\pi^{2} \mathrm{EI} /\left(\mathrm{kl}_{\mathrm{u}}\right)^{2}
\end{aligned}
$$

a) Calculation of EI values

$$
\begin{aligned}
& \mathrm{EI}=\left[0.2 \mathrm{E}_{\mathrm{c}} \mathrm{I}_{\mathrm{g}}+\mathrm{E}_{\mathrm{s}} \mathrm{I}_{\mathrm{se}}\right] /\left[1+\beta_{\mathrm{dns}}\right] \\
& \mathrm{I}_{\mathrm{g}}=\mathrm{bh}^{3} / 12=(18 ")\left(18^{\prime \prime}\right)^{3} / 12=8748 \mathrm{in}^{4} \\
& \mathrm{E}_{\mathrm{c}}=57,000 \vee \mathrm{f}^{\prime}{ }_{\mathrm{c}}=57,000 \sqrt{ } 4000 \mathrm{psi}=3,605,000 \mathrm{psi}=3605 \mathrm{ksi} \\
& \mathrm{E}_{\mathrm{s}}=29,000 \mathrm{ksi}
\end{aligned}
$$

$\mathrm{I}_{\mathrm{se}} \cong 2.2 \rho_{\mathrm{g}} \gamma^{2} \times \mathrm{I}_{\mathrm{g}}$ (Table 12-1 in textbook "Reinforced Concrete Mechanics and Design by Wight and MacGregor)

Assume total steel ratio $\rho_{\mathrm{g}}=0.015$
For an $18 " \times 18^{\prime \prime}$ column: $\gamma=[18 "-(2)(2.5 ")] / 18^{\prime \prime}=0.7222$

$$
\mathrm{I}_{\mathrm{se}} \cong 2.2(0.015)(0.7222)^{2} \times 8748 \mathrm{in}^{4}=150.58 \mathrm{in}^{4}
$$

Assuming that only the dead load is considered to cause a sustained axial load on the columns:

$$
\begin{aligned}
& \left.\quad \beta_{\mathrm{dns}}=(\text { maximum factored sustained axial load }) / \text { (total factored axial load }\right) \\
& \beta_{\mathrm{dns}}=(1.2)(65.32 \mathrm{kips}) / 177.98 \mathrm{kips}=0.6644 \\
& \mathrm{EI}=\left[(0.2)(3605 \mathrm{ksi})\left(8748 \mathrm{in}^{4}\right)+(29,000 \mathrm{ksi})\left(150.58 \mathrm{in}^{4}\right)\right] /[1+0.6644] \\
& =6,413,198.75 \mathrm{kip}_{\mathrm{kin}}{ }^{2}=6.4132 \times 10^{6} \mathrm{kip}_{\mathrm{kin}}{ }^{2}
\end{aligned}
$$

b) Calculation of P_{c}

$$
\mathrm{P}_{\mathrm{c}}=\pi^{2} \mathrm{EI} /\left(\mathrm{kl}_{\mathrm{u}}\right)^{2}=\pi^{2}\left(6,413,198.75 \mathrm{kip}-\mathrm{in}^{2}\right) /\left[\left(1 \times 126^{\prime \prime}\right)^{2}\right]=3986.88 \mathrm{kips}
$$

c) Calculation of $\delta_{\text {ns }}$

$$
\begin{aligned}
\delta_{\mathrm{ns}} & =\mathrm{C}_{\mathrm{m}} /\left[1-\left(\mathrm{P}_{\mathrm{u}} /\left(0.75 \mathrm{P}_{\mathrm{c}}\right)\right)\right]=0.3806 /[1-(177.98 \mathrm{kips} /(0.75)(3986.88 \mathrm{kips}))] \\
& =0.4047 \therefore \text { Use } \delta_{\mathrm{ns}}=1.0
\end{aligned}
$$

Thus, the moments do not need to be magnified for this loading case.
5) Check initial column sections for gravity-load case.

$$
\mathrm{e}=\mathrm{M}_{\mathrm{c}} \mathrm{P}_{\mathrm{u}}=(31.47 \mathrm{k}-\mathrm{ft})(12 \mathrm{in} / \mathrm{ft}) /(177.98 \mathrm{kips})=2.12 "
$$

$\mathrm{e} / \mathrm{h}=2.12 " / 18^{\prime \prime}=0.1179$
Fig. A-9b (from textbook "Reinforced Concrete Mechanics and Design by Wight and MacGregor):

$$
\begin{aligned}
& \text { Using } \gamma=0.722 \cong 0.75, \mathrm{e} / \mathrm{h}=0.1179, \text { and } \rho_{\mathrm{g}}=0.015 \\
& \phi \mathrm{P}_{\mathrm{n}} / \mathrm{A}_{\mathrm{g}}=2.20 \mathrm{ksi} \\
& \mathrm{~A}_{\mathrm{g}} \geq \mathrm{P}_{\mathrm{u}} / 2.20 \mathrm{ksi}=177.98 \mathrm{kips} / 2.20 \mathrm{ksi}=80.90 \mathrm{in}^{2} \\
& \mathrm{~A}_{\mathrm{g}}=\left(18^{\prime \prime}\right)\left(18^{\prime \prime}\right)=324 \mathrm{in}^{2}>80.90 \mathrm{in}^{2} \therefore \mathrm{OK}
\end{aligned}
$$

6) Select the longitudinal bars for this column.

$$
\mathrm{A}_{\mathrm{st}}=\rho_{\mathrm{g}} \mathrm{~A}_{\mathrm{g}}=(0.015)\left(324 \mathrm{in}^{2}\right)=4.86 \mathrm{in}^{2}
$$

Select (12) \#6 bars $\left[\mathrm{A}_{\mathrm{s}}=(12)\left(0.44 \mathrm{in}^{2}\right)=5.28 \mathrm{in}^{2}>4.86 \mathrm{in}^{2} \therefore \mathrm{OK}\right]$
It is OK to be a little conservative due to the corrosive natatorium environment.

$$
\begin{aligned}
\phi \mathrm{P}_{\mathrm{n}}(\max) & =\phi \mathrm{x} 0.80\left[0.85 \mathrm{f}^{\prime} \mathrm{c}\left(\mathrm{~A}_{\mathrm{g}}-\mathrm{A}_{\mathrm{st}}\right)+\mathrm{f}_{\mathrm{y}} \mathrm{~A}_{\mathrm{st}}\right] \\
& =(0.65)(0.80)\left[(0.85)(4 \mathrm{ksi})\left(324 \mathrm{in}^{2}-5.28 \mathrm{in}^{2}\right)+(60 \mathrm{ksi})\left(5.28 \mathrm{in}^{2}\right)\right] \\
& =728.23 \mathrm{kips}>177.98 \mathrm{kips} \therefore \text { OK }
\end{aligned}
$$

*Could reduce reinforcement ratio and go back to graph, obtain new value, and use less reinforcement as long as the column still works

Load Case 2: Gravity Plus Lateral (Earthquake) Loads
Exterior Column:
$P_{u}=67.49 \mathrm{kips}$
$\mathrm{M}_{2}=-398.52 \mathrm{k}-\mathrm{ft}$
$\mathrm{M}_{1}=176.51 \mathrm{k}-\mathrm{ft}$

1) Preliminary column size

$\mathrm{A}_{\mathrm{g}(\text { trial })} \geq \mathrm{P}_{\mathrm{u}} /\left[0.40\left(\mathrm{f}^{\prime}{ }_{\mathrm{c}}+\mathrm{f}_{\mathrm{y}} \rho_{\mathrm{g}}\right)\right.$
$\mathrm{A}_{\mathrm{g}(\text { trial })} \geq 67.49 \mathrm{kips} /[0.40(4 \mathrm{ksi}+(60 \mathrm{ksi})(0.015))]=34.43 \mathrm{in}^{2}$
$\cong(5.87 \mathrm{in} .)^{2}$
Try 18 "x18" column (due to the large moments)
2) Is the story being designed sway or nonsway?

$$
\begin{aligned}
& \mathrm{Q}=\left[\sum \mathrm{P}_{\mathrm{u}} \times \Delta_{\mathrm{o}}\right] /\left[\mathrm{V}_{\mathrm{us}} \times \mathrm{l}_{\mathrm{c}}\right] \\
& \quad \sum \mathrm{P}_{\mathrm{u}} \cong(5)(177.98 \mathrm{k})=889.90 \mathrm{k} \\
& \mathrm{~V}_{\mathrm{us}}=1 \mathrm{kip} \\
& \Delta_{\mathrm{o}}=0.002836^{\prime \prime} \\
& \mathrm{I}_{\mathrm{c}}=10.5^{\prime}=126^{\prime \prime} \\
& \mathrm{Q}=\left[(889.90 \mathrm{kips})\left(0.002836^{\prime \prime}\right)\right] /\left[(1 \mathrm{kips})\left(126^{\prime \prime}\right)\right]=0.02002<0.05
\end{aligned}
$$

\therefore Nonsway (but assume sway story because $\sum \mathrm{P}_{\mathrm{u}}$ will actually be higher due to loads at other columns around the building at that level)

3) Are the columns slender?

$$
r=0.3 \mathrm{~h}=(0.3)\left(18^{\prime \prime}\right)=5.4^{\prime \prime}
$$

$$
\mathrm{kl}_{\mathrm{u}} / \mathrm{r}=(1.2)\left(126^{\prime \prime}\right) / 5.4 "=28>22 \therefore \text { Column is slender }
$$

4) Find $\delta_{\text {ns }}$ for the column.

$$
\begin{aligned}
& \delta_{\mathrm{ns}}=\mathrm{C}_{\mathrm{m}} /\left[1-\left(\mathrm{P}_{\mathrm{u}} /\left(0.75 \mathrm{P}_{\mathrm{c}}\right)\right)\right] \geq 1.0 \\
& \mathrm{C}_{\mathrm{m}}=0.6+0.4\left(\mathrm{M}_{1} / \mathrm{M}_{2}\right)=0.6+0.4(176.51 \mathrm{k}-\mathrm{ft} /-398.52 \mathrm{k}-\mathrm{ft})=0.4228 \\
& \mathrm{P}_{\mathrm{c}}=\pi^{2} \mathrm{EI} /\left(\mathrm{kl}_{\mathrm{u}}\right)^{2}
\end{aligned}
$$

a) Calculation of EI values
$\mathrm{EI}=\left[0.2 \mathrm{E}_{\mathrm{c}} \mathrm{I}_{\mathrm{g}}+\mathrm{E}_{\mathrm{s}} \mathrm{I}_{\mathrm{se}}\right] /\left[1+\beta_{\mathrm{dns}}\right]$
$\mathrm{I}_{\mathrm{g}}=\mathrm{bh}^{3} / 12=\left(18^{\prime \prime}\right)\left(18^{\prime \prime}\right)^{3} / 12=8748$ in 4
$\mathrm{E}_{\mathrm{c}}=57,000 \sqrt{ } \mathrm{f}^{\prime}{ }_{\mathrm{c}}=57,000 \sqrt{ } 4000 \mathrm{psi}=3,605,000 \mathrm{psi}=3605 \mathrm{ksi}$
$\mathrm{E}_{\mathrm{s}}=29,000 \mathrm{ksi}$
$\mathrm{I}_{\mathrm{se}} \cong 2.2 \rho_{\mathrm{g}} \gamma^{2} \times \mathrm{I}_{\mathrm{g}}$ (Table 12-1 in textbook "Reinforced Concrete Mechanics and Design by Wight and MacGregor)

Assume total steel ratio $\rho_{g}=0.015$
For an $18^{\prime \prime} \times 18^{\prime \prime}$ column: $\gamma=\left[18^{\prime \prime}-(2)(2.5 ")\right] / 18^{\prime \prime}=0.7222$
$\mathrm{I}_{\mathrm{se}} \cong 2.2(0.015)(0.7222)^{2} \times 8748 \mathrm{in}^{4}=150.58 \mathrm{in}^{4}$

Assuming that only the dead load is considered to cause a sustained axial load on the columns:

$$
\begin{aligned}
& \quad \beta_{\mathrm{dns}}=(\text { maximum factored sustained axial load }) /(\text { total factored axial load }) \\
& \beta_{\mathrm{dns}}=(1.2)(30.44 \mathrm{kips}) / 67.49 \mathrm{kips}=0.5412 \\
& \mathrm{EI}=\left[(0.2)(3605 \mathrm{ksi})\left(8748 \mathrm{in}^{4}\right)+(29,000 \mathrm{ksi})\left(150.58 \mathrm{in}^{4}\right)\right] /[1+0.5412] \\
& =6,925,855.18 \mathrm{kip}-\mathrm{in}^{2}=6.9259 \times 10^{6}{\mathrm{kip}-\mathrm{in}^{2}}^{2}
\end{aligned}
$$

b) Calculation of P_{c}

$$
\mathrm{P}_{\mathrm{c}}=\pi^{2} \mathrm{EI} /\left(\mathrm{kl}_{\mathrm{u}}\right)^{2}=\pi^{2}\left(6,925,855.18 \mathrm{kip}-\mathrm{in}^{2}\right) /\left[\left(1 \times 126^{\prime \prime}\right)^{2}\right]=4305.58 \mathrm{kips}
$$

c) Calculation of $\delta_{\text {ns }}$

$$
\begin{aligned}
\delta_{\mathrm{ns}} & =\mathrm{C}_{\mathrm{m}} /\left[1-\left(\mathrm{P}_{\mathrm{u}} /\left(0.75 \mathrm{P}_{\mathrm{c}}\right)\right)\right]=0.4228 /[1-(67.49 \mathrm{kips} /(0.75)(4305.58 \mathrm{kips}))] \\
& =0.4318 \therefore \text { Use } \delta_{\mathrm{ns}}=1.0
\end{aligned}
$$

Thus, the moments do not need to be magnified for this loading case.
5) Check initial column sections for gravity-load case.

$$
\begin{aligned}
& \mathrm{e}=\mathrm{M}_{\mathrm{c} /} \mathrm{P}_{\mathrm{u}}=(398.52 \mathrm{k}-\mathrm{ft})(12 \mathrm{in} / \mathrm{ft}) /(67.49 \mathrm{kips})=70.86^{\prime \prime} \\
& \mathrm{e} / \mathrm{h}=70.86^{\prime \prime} / 18^{\prime \prime}=3.94
\end{aligned}
$$

Exceeds moment capacity of column.

Use interaction diagrams (Fig. A-9b) to determine required ρ_{g} :
The interaction diagrams are entered with:

$$
\begin{aligned}
& \phi \mathrm{P}_{\mathrm{n}} / \mathrm{A}_{\mathrm{g}}=\mathrm{P}_{\mathrm{u}} / \mathrm{A}_{\mathrm{g}}=(67.49 \mathrm{k}) /\left(18^{\prime \prime} \mathrm{x} 18^{\prime \prime}\right)=0.208 \\
& \phi \mathrm{M}_{\mathrm{n}} / \mathrm{A}_{\mathrm{g}} \mathrm{~h}=\mathrm{M}_{\mathrm{u}} / \mathrm{A}_{\mathrm{g}} \mathrm{~h}=(398.52 \mathrm{k}-\mathrm{ft})(12 \mathrm{in} / \mathrm{ft}) /\left[\left(18^{\prime \prime} \times 18^{\prime \prime}\right)\left(18^{\prime \prime}\right)\right]=0.820
\end{aligned}
$$

Required $\rho_{g}=0.04$ (which is too high)
\therefore Must increase column size.
Try a 24 " $\times 24$ " column.

1) Use interaction diagrams (Fig. A-9b) to determine required ρ_{g} :

The interaction diagrams are entered with:

$$
\begin{aligned}
& \phi \mathrm{P}_{\mathrm{n}} / \mathrm{A}_{\mathrm{g}}=\mathrm{P}_{\mathrm{u}} / \mathrm{A}_{\mathrm{g}}=(67.49 \mathrm{k}) /(24 " \times 24 ")=0.117 \\
& \phi \mathrm{M}_{\mathrm{n}} / \mathrm{A}_{\mathrm{g}} \mathrm{~h}=\mathrm{M}_{\mathrm{u}} / \mathrm{A}_{\mathrm{g}} \mathrm{~h}=(398.52 \mathrm{k}-\mathrm{ft})(12 \mathrm{in} / \mathrm{ft}) /[(24 " \times 24 ")(24 ")]=0.346
\end{aligned}
$$

Required $\rho_{\mathrm{g}} \cong 0.014 \therefore$ OK to use 24 "x24" column
2) Select the reinforcement

$$
\mathrm{A}_{\mathrm{st}}=\rho_{\mathrm{g}} \mathrm{~A}_{\mathrm{g}}=(0.014)\left(24 " \times 24^{\prime \prime}\right)=8.064 \mathrm{in}^{2}
$$

Use (12) \#8 bars $\left[\mathrm{A}_{\text {st }}=(12)\left(0.79 \mathrm{in}^{2}\right)=9.48 \mathrm{in}^{2}>8.064 \mathrm{in}^{2} \therefore \mathrm{OK}\right]$
It is ok to be a little conservative due to the corrosive natatorium environment.

FINAL DESIGN: Use 24"x24" columns with (12) \#8 bars.

Concrete Moment Frame - Column Line 2

Beams
*Use rebar cover of $1.5\left(1.5^{\prime \prime}\right)=2.25 "$ due to corrosive environment (natatorium) (see ACI 7.7.6.1)

Design beams as a continuous beam.
Design beams for worst case and make all four beams the same size.

Axial Load and Moment (Unfactored) for Column Line 2 (24x24 Columns and 24x30 Beams)								
	Beam 20	Beam 21	Beam 24	Beam 25	Column 10 Bottom, Exterior	Column 12 Bottom, Interior	Column 11 Top, Exterior	Column 13 Top, Interior
P_{D}					-130.28	-190.87	-67.61	-104.26
P_{L}					-29.47	-29.47	0.00	0.00
P_{Lr}					-59.92	-113.03	-24.93	-42.76
$\mathrm{P}_{\text {S }}$					-35.71	-64.91	-28.28	-50.04
P_{w}					11.43	-1.55	3.55	-0.44
$\mathrm{P}_{\mathrm{w}, \mathrm{reversed}}$					-11.39	1.52	-3.58	0.47
P_{E}					10.91	-1.31	2.51	-0.10
$\mathrm{P}_{\text {E, REVERSED }}$					-11.13	1.48	-2.76	0.30
V_{D} (Top or Left)	-22.13	-22.72	-28.30	-31.31	-1.59	-0.11	-12.42	1.39
V_{D} (Bottom or Right)	23.37	22.78	33.63	30.62	-1.59	-0.11	-12.42	1.39
$\mathrm{V}_{\text {Lr }}$ (Top or Left)	-30.82	-32.38	-14.53	-15.69	-3.51	0.21	-9.46	0.89
$\mathrm{V}_{\text {Lr }}$ (Bottom or Right)	33.72	32.16	16.67	15.51	-3.51	0.21	-9.46	0.89
V_{S} (Top or Left)	-7.43	-7.39	-16.27	-18.26	-0.12	-0.15	-6.69	0.80
$\mathrm{V}_{\text {S }}$ (Bottom or Right)	7.48	7.51	19.77	17.77	-0.12	-0.15	-6.69	0.80
V_{w} (Top or Left)	7.88	6.77	3.55	3.11	14.23	16.60	3.91	9.72
V_{w} (Bottom or Right)	7.88	6.77	3.55	3.11	14.23	16.60	3.91	9.72
$\mathrm{V}_{\text {W,REVERSED }}($ Top or Left)	-7.81	-6.76	-3.58	-3.11	-13.85	-16.39	-4.08	-9.80
$\mathrm{V}_{\text {w,REVERSEd }}($ Bottom or Right)	-7.81	-6.76	-3.58	-3.11	-13.85	-16.39	-4.08	-9.80
V_{E} (Top or Left)	8.40	7.19	2.51	2.41	18.74	21.20	0.63	6.21
V_{E} (Bottom or Right)	8.40	7.19	2.51	2.41	18.74	21.20	0.63	6.21
$V_{\text {E,REVERSEd }}$ (Top or Left)	-8.37	-7.19	-2.76	-2.46	-17.84	-20.72	-1.43	-6.73
$\mathrm{V}_{\text {E,REVERSED }}($ Bottom or Right)	-8.37	-7.19	-2.76	-2.46	-17.84	-20.72	-1.43	-6.73
M_{D} (Top or Left)	-107.72	-120.68	-134.03	-203.29	23.39	1.41	134.03	-16.04
M_{D} (Bottom or Right)	-127.58	-121.71	-219.33	-192.13	-12.27	-1.03	-84.33	8.31
$\mathrm{M}_{\text {Lr }}$ (Top or Left)	-152.38	-188.86	-80.19	-118.16	59.37	-62.90	80.19	-24.01
$\mathrm{M}_{\text {Lr }}$ (Bottom or Right)	-190.66	-189.38	-124.66	-113.20	-29.47	33.23	-93.02	70.78
M_{S} (Top or Left)	-39.61	-38.48	-79.55	-125.40	1.46	2.14	79.55	-10.15
M_{S} (Bottom or Right)	-40.29	-40.42	-135.55	-117.56	-1.15	-1.26	-38.15	3.96
M_{W} (Top or Left)	132.76	107.83	59.58	49.47	-123.63	-159.89	-59.58	-103.48
M_{W} (Bottom or Right)	-119.47	-108.93	-54.01	-49.92	195.36	212.20	9.13	67.40
$\mathrm{M}_{\mathrm{w}, \text { Reversed }}$ (Top or Left)	-131.34	-107.46	-60.23	-49.56	119.83	157.64	60.23	103.96
$M_{\text {w,Reversed }}$ (Bottom or Right)	118.49	108.74	54.40	49.96	-190.65	-209.68	-11.51	-68.31
M_{E} (Top or Left)	141.68	114.25	41.03	38.46	-171.63	-209.94	-41.03	-77.86
M_{E} (Bottom or Right)	-126.96	-115.73	-39.40	-38.68	248.42	265.22	-29.94	31.27
$\mathrm{M}_{\mathrm{E}, \text { ReVERSED }}$ (Top or Left)	-141.13	-114.26	-45.80	-39.47	161.78	204.63	45.80	81.99
$\mathrm{M}_{\mathrm{E}, \text { REVERSED }}$ (Bottom or Right)	126.69	115.73	42.51	39.19	-238.16	-259.92	20.65	-36.32
M ${ }_{\text {D,MIDSPAN }}$	64.33	60.79	132.28	111.25				
M Lr,MIDSPAN	94.47	85.42	69.86	61.87				
$\mathrm{M}_{\text {S,MIDSPAN }}$	19.68	20.18	84.64	70.71				
$\mathrm{M}_{\text {W,MIDSPAN }}$	6.64	-0.55	2.79	-0.23				
$M_{\text {W,REVERSED,MIDSPAN }}$	-6.43	0.64	-2.92	0.20				
$\mathrm{M}_{\mathrm{E}, \mathrm{MIDSPAN}}$	7.36	-0.74	0.82	-0.11				
$M_{\text {E,REVERSED,MIDSPAN }}$	-7.22	0.74	-1.64	-0.14				

Torsional Effects are Included in Table

1.2D +1- 1.0E + 0.2S								
Max $\mathrm{V}_{\text {TOP/LEFT }}$ (kips)	-36.411	-35.929	-39.974	-43.682	-19.773	-20.885	-17.672	8.034
Max $\mathrm{V}_{\text {BottomiRIGHt }}$ (kips)	37.935	36.025	46.823	42.709	-19.773	-20.885	-17.672	8.034
Max $\mathrm{M}_{\text {ToP/LEft }}(\mathrm{ft}$-kips)	-278.3137	-266.7756	-222.5419	-308.5008	190.1374	206.753	222.5419	-99.1366
Max $\mathrm{M}_{\text {Bottompright }}$ (ft-kips)	-288.1182	-269.8611	-329.7016	-292.7521	-253.1161	-261.4039	-138.7701	42.032
Max $\mathrm{M}_{\text {MIISPAN }}$ (ft-kips)	88.4919	77.7193	176.4816	147.5001				
Max P_{u} (kips)					-174.6034	-243.3334	-89.548	-135.222

$1.2 \mathrm{D}+1.6(\mathrm{Lr}$ or S $)+0.8 \mathrm{~W}$								
Max $\mathrm{V}_{\text {TOP/LEFT }}$ (kips)	-82.11	-84.48	-62.86	-69.28	-18.60	-13.48	-33.30	10.87
Max $\mathrm{V}_{\text {Bottomright }}$ (kips)	88.30	84.21	74.83	67.66	-18.60	-13.48	-33.30	10.87
Max M ${ }_{\text {ToP/LEFT }}$ (ft-kips)	-478.15	-532.95	-336.30	-484.23	218.92	131.23	336.30	-90.13
Max $\mathrm{M}_{\text {BotromRIGHt }}$ (ft-kips)	-553.73	-536.20	-523.28	-458.59	-214.40	-170.99	-259.23	177.14
Max M MIISPAN ($\mathrm{ft-kips)}$	233.66	210.13	272.74	232.65				
Max P_{u} (kips)					-261.32	-411.13	-129.25	-205.53

1.2D + 1.6W + 0.5(Lr or S)								
Max $\mathrm{V}_{\text {TOP/LEFT }}$ (kips)	-54.457	-54.264	-47.827	-51.678	-25.824	-26.424	-26.162	17.662
Max $\mathrm{V}_{\text {BOttom/RIGHT }}$ (kips)	57.515	54.254	55.921	50.599	-25.824	-26.424	-26.162	17.662
Max M ${ }_{\text {TOP/LEFT }}(\mathrm{ft}$-kips)	-415.59795	-411.17805	-296.9865	-385.9405	249.48145	254.9868	296.9865	-189.89
Max $\mathrm{M}_{\text {BOtтомIRIGHT }}$ (ft-kips)	-439.5792	-415.0268	-417.3857	-369.2095	-334.50205	-337.3473	-166.1165	153.20445
Max M ${ }_{\text {MIDSPAN }}$ (ft-kips)	135.061	116.6864	205.5139	169.1805				
Max P_{u} (kips)					-204.5154	-288.0394	-101.004	-150.842

	1.2D +1.6L + 0.5(L_{r} or S)			
Max P_{u} (kips)	-233.44	-332.70	-93.60	-146.49

| | 1.4D | | |
| :--- | :--- | :--- | :--- | :--- |
| Max P_{u} (kips) | -182.39 | -267.21 | -94.65 |

Torsional Effects are Included in Tables

BEAM DESIGN

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{u}, \max }=88.30 \mathrm{kips}\left(1.2 \mathrm{D}+1.6 \mathrm{~L}_{\mathrm{r}}+0.8 \mathrm{~W}\right) \\
& \mathrm{M}_{\mathrm{u}, \max } \text { at Supports }=-553.73 \mathrm{ktt}\left(1.2 \mathrm{D}+1.6 \mathrm{~L}_{\mathrm{r}}+0.8 \mathrm{~W}\right) \\
& \mathrm{M}_{\mathrm{u}, \max } \text { at Midspan }=272.74 \mathrm{k}-\mathrm{ft}\left(1.2 \mathrm{D}+1.6 \mathrm{~L}_{\mathrm{r}}+0.8 \mathrm{~W}\right)
\end{aligned}
$$

Use normal-weight concrete with $\mathrm{f}^{\prime}{ }_{\mathrm{c}}=4000 \mathrm{psi}$
$f_{y}=60,000 \mathrm{psi}$ for flexural reinforcement
$\mathrm{f}_{\mathrm{yt}}=60,000 \mathrm{psi}$ for stirrups

1) Choose the actual size of the beam stem.

a) Calculate the minimum depth based on deflections.

Use worst case scenario (one-end continuous instead of both ends continuous).
ACI Table 9.5(a):
Minimum thickness, $\mathrm{h}=\mathrm{L} / 18.5=\left[\left(32^{\prime}\right)(12 \mathrm{in} / \mathrm{ft})\right] / 18.5=20.76$ "
b) Determine the minimum depth based on the maximum negative moment.
$\mathrm{M}_{\mathrm{u}, \text { max }}$ at Supports $=553.73 \mathrm{k}-\mathrm{ft}$
$\rho($ initial $)=\left[\left(\beta_{1} f^{\prime}{ }_{\mathrm{c}}\right) /\left(4 \mathrm{f}_{\mathrm{y}}\right)\right]=[(0.85)(4 \mathrm{ksi}) /(4)(60 \mathrm{ksi})]=0.0142$
$\omega=\rho\left(\mathrm{f}_{\mathrm{y}} / \mathrm{f}^{\prime} \mathrm{c}\right)=(0.0142)(60 \mathrm{ksi} / 4 \mathrm{ksi})=0.213$
$\mathrm{R}=\omega \mathrm{f} \mathrm{c}(1-0.59 \omega)=(0.213)(4 \mathrm{ksi})[1-(0.59)(0.213)]=0.745 \mathrm{ksi}$
$\mathrm{bd}^{2} \geq \mathrm{M}_{\mathrm{u}} / \phi \mathrm{R}=[(553.73 \mathrm{ft}-\mathrm{kips})(12 \mathrm{in} / \mathrm{ft})] /[(0.9)(0.745 \mathrm{ksi})]=9910.16 \mathrm{in}^{3}$
Assuming b $=24$ in. (for $24^{\prime \prime} \times 24^{\prime \prime}$ column)

$$
\mathrm{d} \geq 20.32 \text { in. }
$$

$\mathrm{h} \cong 20.32^{\prime \prime}+3.25^{\prime \prime}=23.57 "$ (accounting for $2.25^{\prime \prime}$ clear cover due to corrosive environment and assuming \#4 stirrups and \#8 bars; see ACI 7.7.6.1)

$$
\left[(1.5)(1.5 ")=2.25^{\prime \prime} ; 2.25^{\prime \prime}+0.5 \prime \prime+(1 / 2)(1.00 ")=3.25^{\prime \prime}\right]
$$

Try h = 30"

$$
\begin{aligned}
& h=30^{\prime \prime}>20.76^{\prime \prime} \therefore \text { Meets deflection criteria } \\
& d \cong 30^{\prime \prime}-3.25^{\prime \prime}=26.75^{\prime \prime}
\end{aligned}
$$

c) Check the shear capacity of the beam.

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{u}}=\phi\left(\mathrm{V}_{\mathrm{c}}+\mathrm{V}_{\mathrm{s}}\right) \\
& \mathrm{V}_{\mathrm{u}, \max }=88.30 \mathrm{kips}
\end{aligned}
$$

From ACI Code Section 11.2.1.1, the nominal V_{c} is

$$
V_{c}=2 \lambda \sqrt{ } f^{\prime}{ }_{c} b_{w} d=(2)(1.0) \sqrt{ } 4000 \mathrm{psi}(24 ")(26.75 ") / 1000=81.21 \mathrm{kips}
$$

ACI Code Section 11.4.7.9 sets the maximum nominal V_{s} as

$$
\mathrm{V}_{\mathrm{s}}=8 \sqrt{ } \mathrm{f}^{\prime}{ }_{\mathrm{c}} \mathrm{~b}_{\mathrm{w}} \mathrm{~d}=(8) \sqrt{ } 4000 \mathrm{psi}(24 ")\left(26.75^{\prime \prime}\right) / 1000=324.83 \mathrm{kips}
$$

Thus, the absolute maximum $\phi \mathrm{V}_{\mathrm{n}}=0.75(81.21 \mathrm{k}+324.83 \mathrm{k})=304.53 \mathrm{kips}$

$$
\geq \mathrm{V}_{\mathrm{u}, \text { max }}=88.30 \mathrm{kips} \quad \therefore \mathrm{OK}
$$

d) Summary. Use:

$$
\begin{aligned}
& \mathrm{b}=24^{\prime \prime} \\
& \mathrm{h}=30^{\prime \prime} \\
& \mathrm{d}=26.75^{\prime \prime}
\end{aligned}
$$

2) Compute the dead load of the stem, and recompute the total moment.

Weight of $24 " \times 30 "$ concrete beam $=\left[(24 ")\left(30^{")} / 144 \mathrm{in}^{2} / \mathrm{ft}^{2}\right]\left[\left(150 \mathrm{lb} / \mathrm{ft}^{3}\right) / 1000\right]\right.$

$$
=0.720 \mathrm{k} / \mathrm{ft}
$$

Original dead load $=1.42 \mathrm{k} / \mathrm{ft}$
New dead load $=1.42 \mathrm{k} / \mathrm{ft}+0.720 \mathrm{k} / \mathrm{ft}=2.14 \mathrm{k} / \mathrm{ft}$
$(2.14 \mathrm{k} / \mathrm{ft}) /(1.42 \mathrm{k} / \mathrm{ft})=1.507$
New $\mathrm{M}_{\mathrm{u}, \text { max }}$ at Supports \cong
Beam 20: 1.2D $+1.6 \mathrm{~L}_{\mathrm{r}}+0.8 \mathrm{~W}$
$=(1.2)(-127.58 \mathrm{k}-\mathrm{ft} * 1.507)+(1.6)(-190.66 \mathrm{k}-\mathrm{ft})+(0.8)(-119.47 \mathrm{k}-\mathrm{ft})=$
$=-631.35 \mathrm{k}-\mathrm{ft}$
New $\mathrm{M}_{\mathrm{u}, \text { max }}$ at Midspan \cong

$$
\begin{aligned}
& \text { Beam 24: } 1.2 \mathrm{D}+1.6 \mathrm{~S}+0.8 \mathrm{~W} \\
& =(1.2)(132.28 \mathrm{k}-\mathrm{ft} * 1.507)+(1.6)(84.64 \mathrm{k}-\mathrm{ft})+(0.8)(2.79 \mathrm{k}-\mathrm{ft}) \\
& =376.87 \mathrm{k}-\mathrm{ft}
\end{aligned}
$$

New $\mathrm{V}_{\mathrm{u}, \max } \cong$
Beam 20: 1.2D $+1.6 \mathrm{~L}_{\mathrm{r}}+0.8 \mathrm{~W}$
$=(1.2)(23.37 \mathrm{k} * 1.507)+(1.6)(33.72 \mathrm{k})+(0.8)(7.88 \mathrm{k})=$
$=102.52 \mathrm{k}<\phi \mathrm{V}_{\mathrm{n}}=304.53 \mathrm{kips}$
\therefore Shear capacity is still OK.

3) Design the flexural reinforcement.

a) Compute the area of steel required at the point of maximum negative moment.

$$
A_{s} \geq M_{u} /\left[\phi f_{y}(d-a / 2)\right] \cong M_{u} /\left[\phi f_{y}(j d)\right]
$$

Because there is negative moment at the support, the beams acts as a rectangular beam with compression in the web. Assume that $\mathrm{j}=0.9$ and $\phi=0.90$

$$
\mathrm{A}_{\mathrm{s}} \cong(631.35 \mathrm{k}-\mathrm{ft})(12 \mathrm{in} / \mathrm{ft}) /\left[(0.9)(60 \mathrm{ksi})(0.9)\left(26.75^{\prime \prime}\right)\right]=5.83 \mathrm{in} .^{2}
$$

This value can be improved with one iteration to find the depth of the compression stress block, a:
$\mathrm{a}=\mathrm{A}_{\mathrm{s}} \mathrm{f}_{\mathrm{y}} / 0.85 \mathrm{f}^{\prime}{ }_{\mathrm{c}} \mathrm{b}=\left(5.83 \mathrm{in}^{2}\right)(60 \mathrm{ksi}) /[(0.85)(4 \mathrm{ksi})(24 ")]=4.285^{\prime \prime}$
and then recalculating the required A_{s} with this calculated value of a:

$$
\begin{aligned}
\mathrm{A}_{\mathrm{s}} \geq \mathrm{M}_{\mathrm{u}} /\left[\phi \mathrm{f}_{\mathrm{y}}(\mathrm{~d}-\mathrm{a} / 2)\right]= & (631.35 \mathrm{k}-\mathrm{ft})(12 \mathrm{in} / \mathrm{ft}) /\left[(0.9)(60 \mathrm{ksi})\left(26.75 "-4.285^{\prime} / 2\right)\right] \\
= & 5.70 \mathrm{in}^{2}
\end{aligned}
$$

Before proceeding, it must be confirmed that this is a tension-controlled section. This can be done by showing that the neutral axis, c , is less than $3 / 8$ of d .

$$
\begin{aligned}
& \mathrm{a}=\mathrm{A}_{s} \mathrm{f}_{\mathrm{y}} / 0.85 \mathrm{f}^{\prime} \mathrm{b} \mathrm{~b}=\left(5.70 \mathrm{in}^{2}\right)(60 \mathrm{ksi}) /[(0.85)(4 \mathrm{ksi})(24 ")]=4.192^{\prime \prime} \\
& \mathrm{c}=\mathrm{a} / \beta_{1}=4.192^{\prime \prime} / 0.85=4.932^{\prime \prime}<(3 / 8)(\mathrm{d})=(3 / 8)\left(26.75^{\prime \prime}\right)=10.031 "
\end{aligned}
$$

\therefore Section is tension-controlled and can be designed using $\phi=0.90$
b) Compute the area of steel required at the point of maximum positive moment.

$$
A_{s} \geq M_{u} /\left[\phi f_{y}(d-a / 2)\right] \cong M_{u} /\left[\phi f_{y}(j d)\right]
$$

Assume that the compression zone is rectangular, and take $\mathrm{j}=0.95$ for the first calculation of A_{s}.

$$
\mathrm{A}_{\mathrm{s}} \cong(376.87 \mathrm{k}-\mathrm{ft})(12 \mathrm{in} / \mathrm{ft}) /\left[(0.9)(60 \mathrm{ksi})(0.95)\left(26.75^{\prime \prime}\right)\right]=3.30 \mathrm{in}^{2}
$$

This value can be improved with one iteration to find the depth of the compression stress block, a:

$$
\mathrm{a}=\mathrm{A}_{\mathrm{s}} \mathrm{f}_{\mathrm{y}} / 0.85 \mathrm{f}^{\prime} \mathrm{b} \mathrm{~b}=\left(3.30 \mathrm{in}^{2}\right)(60 \mathrm{ksi}) /[(0.85)(4 \mathrm{ksi})(24 ")]=2.423 "
$$

and then recalculating the required A_{s} with this calculated value of a :

$$
\begin{aligned}
\mathrm{A}_{\mathrm{s}} \geq \mathrm{M}_{\mathrm{u}} /\left[\phi \mathrm{f}_{\mathrm{y}}(\mathrm{~d}-\mathrm{a} / 2)\right]= & (376.87 \mathrm{k}-\mathrm{ft})(12 \mathrm{in} / \mathrm{ft}) /[(0.9)(60 \mathrm{ksi})(26.75 "-2.423 " / 2)] \\
= & 3.28 \mathrm{in}^{2}
\end{aligned}
$$

Before proceeding, it must be confirmed that this is a tension-controlled section. This can be done by showing that the neutral axis, c , is less than $3 / 8$ of d .

$$
\begin{aligned}
& \mathrm{a}=\mathrm{A}_{\mathrm{s}} \mathrm{f}_{\mathrm{y}} / 0.85 \mathrm{f}^{\prime}{ }_{\mathrm{c}} \mathrm{~b}=\left(3.28 \mathrm{in}^{2}\right)(60 \mathrm{ksi}) /\left[(0.85)(4 \mathrm{ksi})\left(24^{\prime \prime}\right)\right]=2.411^{\prime \prime} \\
& \mathrm{c}=\mathrm{a} / \beta_{1}=2.411^{\prime \prime} / 0.85=2.837^{\prime \prime}<(3 / 8)(\mathrm{d})=(3 / 8)\left(26.75^{\prime \prime}\right)=10.031 "
\end{aligned}
$$

\therefore Section is tension-controlled and can be designed using $\phi=0.90$
c) Calculate the minimum reinforcement (using ACI Code Section 10.5.1).
$A_{s, \min }=\max$. of:

$$
\begin{aligned}
& {\left[3 \sqrt{ } \mathrm{f}_{\mathrm{c}} \mathrm{c} / \mathrm{f}_{\mathrm{y}}\right] \mathrm{b}_{\mathrm{w}} \mathrm{~d}=[3 \sqrt{ } 4000 \mathrm{psi} / 60000 \mathrm{psi}](24 ")\left(26.75^{\prime \prime}\right)=2.03 \mathrm{in}^{2}} \\
& 200 \mathrm{~b}_{\mathrm{w}} \mathrm{~d} / \mathrm{f}_{\mathrm{y}}=(200)(24 ")\left(26.75^{\prime \prime}\right) / 60000 \mathrm{psi}=2.14 \mathrm{in}^{2} \\
& \quad \therefore A_{\mathrm{s}, \text { min }}=2.14 \mathrm{in}^{2}
\end{aligned}
$$

4) Calculate the area of steel and select the bars.

a) Negative-moment Region
$\mathrm{A}_{\mathrm{s}, \text { req }}=5.70 \mathrm{in}^{2}>\mathrm{A}_{\mathrm{s}, \min }=2.14 \mathrm{in}^{2} \therefore \mathrm{OK}$
Use (10) \#7 bars $\left[\mathrm{A}_{\mathrm{s}}=(10)\left(0.60 \mathrm{in}^{2}\right)=6.00 \mathrm{in}^{2}>5.70 \mathrm{in}^{2} \therefore \mathrm{OK}\right]$
Small bars were selected at the supports because the bars have to be hooked into the exterior supports and there may not be enough room for a standard hook on larger bars.
b) Positive-moment Region
$\mathrm{A}_{\mathrm{s}, \mathrm{req}}=3.28 \mathrm{in}^{2}>\mathrm{A}_{\mathrm{s}, \min }=2.14 \mathrm{in}^{2} \therefore \mathrm{OK}$
Use (6) \#7 bars $\left[\mathrm{A}_{\mathrm{s}}=(6)\left(0.60 \mathrm{in}^{2}\right)=3.60 \mathrm{in}^{2}>3.28 \mathrm{in}^{2} \therefore \mathrm{OK}\right]$
5) Check the distribution of the reinforcement (spacing requirements).
a) Negative-moment Region

$$
\mathrm{c}_{\mathrm{c}}=2.25 \text { in. cover }+0.5 \text { in. stirrups }=2.75^{\prime \prime}
$$

The maximum bar spacing is

$$
\begin{aligned}
& s=15\left(40,000 / f_{s}\right)-2.5 c_{c} \\
& f_{s}=(2 / 3)\left(f_{y}\right)=(2 / 3)(60,000 \mathrm{ksi})=40,000 \mathrm{ksi} \\
& s=15(40,000 / 40,000)-(2.5)\left(2.75^{\prime \prime}\right)=8.125^{\prime \prime}
\end{aligned}
$$

Spacing of bars is less than $8.125^{\prime \prime}$ by inspection.
Minimum bar spacing:

$$
\begin{aligned}
& \mathrm{s}_{\mathrm{c}}=\max \text { of }\left[1 ", \mathrm{~d}_{\mathrm{b}},(4 / 3) \mathrm{s}_{\mathrm{a}}\right] ; \text { Assume } \mathrm{s}_{\mathrm{a}}=1 " \text { aggregate } \\
& \mathrm{s}_{\mathrm{c}}=\max \text { of }\left[1 ", 0.875^{\prime \prime},(4 / 3)\left(1^{\prime \prime}\right)=1.333^{\prime \prime}\right] ; \text { Assume } \mathrm{s}_{\mathrm{a}}=1 " \text { aggregate } \\
& \mathrm{s}_{\mathrm{c}}=1.333^{\prime \prime}
\end{aligned}
$$

Side spacing and cover:

$$
\begin{aligned}
& \mathrm{b}>(\mathrm{n})\left(\mathrm{d}_{\mathrm{b}}\right)+(\mathrm{n}-1)\left(\mathrm{s}_{\mathrm{c}}\right)+2 \mathrm{~d}_{\mathrm{tr}}+2 \mathrm{c}_{\mathrm{c}} \\
& 24^{\prime \prime}>(10)\left(0.875^{\prime \prime}\right)+(10-1)(1.333 ")+(2)(0.5 ")+(2)\left(2.25^{\prime \prime}\right)
\end{aligned}
$$

$$
24 "<26.25 " \therefore \text { Need two rows of reinforcing in negative-moment region }
$$

Minimum vertical spacing between layers of reinforcement

$$
\begin{aligned}
& =\max \cdot \text { of: }(4 / 3)\left(\mathrm{s}_{\mathrm{a}}\right) \text { or } 1 " \\
& =\max \cdot \text { of }(4 / 3)\left(1^{\prime \prime}\right)=1.333^{\prime \prime} \text {, or } 1 " \\
& =1.333 "
\end{aligned}
$$

New $\mathrm{d}_{\text {eff }}=30 "-2.25^{\prime \prime}-0.5^{\prime \prime}-0.875^{\prime \prime}-(1 / 2)(1.333 ")=25.708^{\prime \prime}$

1) Re-check the shear capacity of the beam with $d=25.708$ ".

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{u}}=\phi\left(\mathrm{V}_{\mathrm{c}}+\mathrm{V}_{\mathrm{s}}\right) \\
& \mathrm{V}_{\mathrm{u}, \max }=102.52 \mathrm{kips}
\end{aligned}
$$

From ACI Code Section 11.2.1.1, the nominal V_{c} is

$$
\mathrm{V}_{\mathrm{c}}=2 \lambda \sqrt{ } \mathrm{f}_{\mathrm{c}}{ } \mathrm{~b}_{\mathrm{w}} \mathrm{~d}=(2)(1.0) \sqrt{ } 4000 \mathrm{psi}(24 ")\left(25.708^{\prime \prime}\right) / 1000=78.04 \mathrm{kips}
$$

ACI Code Section 11.4.7.9 sets the maximum nominal V_{s} as

$$
\mathrm{V}_{\mathrm{s}}=8 \sqrt{ } \mathrm{f}^{\prime}{ }_{\mathrm{c}} \mathrm{~b}_{\mathrm{w}} \mathrm{~d}=(8) \sqrt{ } 4000 \mathrm{psi}(24 ")\left(25.708^{\prime}\right) / 1000=312.18 \mathrm{kips}
$$

Thus, the absolute maximum $\phi \mathrm{V}_{\mathrm{n}}=0.75(78.04 \mathrm{k}+312.18 \mathrm{k})=292.67 \mathrm{kips}$

$$
\geq \mathrm{V}_{\mathrm{u}, \max }=102.52 \mathrm{kips} \therefore \mathrm{OK}
$$

Shear capacity is OK when accounting for weight of 24×30 beam.

2) Re-design the flexural reinforcement with $\mathbf{d}=\mathbf{2 5 . 7 0 8}$ ".

a) Compute the area of steel required at the point of maximum negative moment.
$\mathrm{A}_{\mathrm{s}} \geq \mathrm{M}_{\mathrm{u}} /\left[\phi \mathrm{f}_{\mathrm{y}}(\mathrm{d}-\mathrm{a} / 2)\right] \cong \mathrm{M}_{\mathrm{u}} /\left[\phi \mathrm{f}_{\mathrm{y}}(\mathrm{jd})\right]$
Because there is negative moment at the support, the beams acts as a rectangular beam with compression in the web. Assume that $\mathrm{j}=0.9$ and $\phi=0.90$

$$
\mathrm{A}_{\mathrm{s}} \cong(631.35 \mathrm{k}-\mathrm{ft})(12 \mathrm{in} / \mathrm{ft}) /\left[(0.9)(60 \mathrm{ksi})(0.9)\left(25.708^{\prime \prime}\right)\right]=6.06 \mathrm{in}^{2}
$$

This value can be improved with one iteration to find the depth of the compression stress block, a:
$\mathrm{a}=\mathrm{A}_{s} \mathrm{f}_{\mathrm{y}} / 0.85 \mathrm{f}^{\prime}{ }^{\prime} \mathrm{b}=\left(6.06 \mathrm{in}^{2}\right)(60 \mathrm{ksi}) /\left[(0.85)(4 \mathrm{ksi})\left(24{ }^{\prime \prime}\right)\right]=4.459$ "
and then recalculating the required A_{s} with this calculated value of a:

$$
\begin{aligned}
\mathrm{A}_{\mathrm{s}} \geq \mathrm{M}_{\mathrm{u}} /\left[\phi \mathrm{f}_{\mathrm{y}}(\mathrm{~d}-\mathrm{a} / 2)\right]= & (631.35 \mathrm{k}-\mathrm{ft})(12 \mathrm{in} / \mathrm{ft}) /\left[(0.9)(60 \mathrm{ksi})\left(25.708^{\prime \prime}-4.459 " / 2\right)\right] \\
= & 5.98 \mathrm{in}^{2}
\end{aligned}
$$

Before proceeding, it must be confirmed that this is a tension-controlled section. This can be done by showing that the neutral axis, c , is less than $3 / 8$ of d .

$$
\begin{aligned}
& \mathrm{a}=\mathrm{A}_{s} \mathrm{f}_{\mathrm{y}} / 0.85 \mathrm{f}^{\prime}{ }_{\mathrm{c}} \mathrm{~b}=\left(5.98 \mathrm{in}^{2}\right)(60 \mathrm{ksi}) /\left[(0.85)(4 \mathrm{ksi})\left(24^{\prime \prime}\right)\right]=4.394^{\prime \prime} \\
& \mathrm{c}=\mathrm{a} / \beta_{1}=4.394^{\prime \prime} / 0.85=5.169^{\prime \prime}<(3 / 8)(\mathrm{d})=(3 / 8)\left(25.708^{\prime \prime}\right)=9.641 "
\end{aligned}
$$

\therefore Section is tension-controlled and can be designed using $\phi=0.90$
b) Compute the area of steel required at the point of maximum positive moment.

$$
A_{s} \geq M_{u} /\left[\phi f_{y}(d-a / 2)\right] \cong M_{u} /\left[\phi f_{y}(j d)\right]
$$

Assume that the compression zone is rectangular, and take $\mathrm{j}=0.95$ for the first calculation of A_{s}.

$$
\mathrm{A}_{\mathrm{s}} \cong(376.87 \mathrm{k}-\mathrm{ft})(12 \mathrm{in} / \mathrm{ft}) /\left[(0.9)(60 \mathrm{ksi})(0.95)\left(25.708^{\prime \prime}\right)\right]=3.43 \mathrm{in} .^{2}
$$

This value can be improved with one iteration to find the depth of the compression stress block, a:

$$
\mathrm{a}=\mathrm{A}_{\mathrm{s}} \mathrm{f}_{\mathrm{y}} / 0.85 \mathrm{f}^{\prime} \mathrm{b} \mathrm{~b}=\left(3.43 \mathrm{in}^{2}\right)(60 \mathrm{ksi}) /\left[(0.85)(4 \mathrm{ksi})\left(24^{\prime \prime}\right)\right]=2.521^{\prime \prime}
$$

and then recalculating the required A_{s} with this calculated value of a :

$$
\begin{aligned}
\mathrm{A}_{\mathrm{s}} \geq \mathrm{M}_{\mathrm{u}} /\left[\phi \mathrm{f}_{\mathrm{y}}(\mathrm{~d}-\mathrm{a} / 2)\right]= & (376.87 \mathrm{k}-\mathrm{ft})(12 \mathrm{in} / \mathrm{ft}) /\left[(0.9)(60 \mathrm{ksi})\left(25.708^{\prime \prime}-2.521 " / 2\right)\right] \\
& =3.43 \mathrm{in}^{2}
\end{aligned}
$$

Before proceeding, it must be confirmed that this is a tension-controlled section. This can be done by showing that the neutral axis, c , is less than $3 / 8$ of d .

$$
\begin{aligned}
& \mathrm{a}=\mathrm{A}_{\mathrm{s}} \mathrm{f}_{\mathrm{y}} / 0.85 \mathrm{f}^{\prime} \mathrm{c} \mathrm{~b}=\left(3.43 \mathrm{in}^{2}\right)(60 \mathrm{ksi}) /\left[(0.85)(4 \mathrm{ksi})\left(24^{\prime \prime}\right)\right]=2.522^{\prime \prime} \\
& \mathrm{c}=\mathrm{a} / \beta_{1}=2.522^{\prime \prime} / 0.85=2.967^{\prime \prime}<(3 / 8)(\mathrm{d})=(3 / 8)\left(25.708^{\prime \prime}\right)=9.641^{\prime \prime}
\end{aligned}
$$

\therefore Section is tension-controlled and can be designed using $\phi=0.90$

3) Re-calculate the area of steel and select the bars.

a) Negative-moment Region

$$
\mathrm{A}_{\mathrm{s}, \text { req }}=5.98 \mathrm{in}^{2}>\mathrm{A}_{\mathrm{s}, \text { min }}=2.14 \mathrm{in}^{2} \therefore \mathrm{OK}
$$

Use (10) \#7 bars in two rows.

$$
\begin{aligned}
& \quad\left[\mathrm{A}_{\mathrm{s}}=(10)\left(0.60 \mathrm{in}^{2}\right)=6.00 \mathrm{in}^{2}>5.98 \mathrm{in}^{2} \therefore \mathrm{OK}\right] \\
& \mathrm{a}=\mathrm{A}_{\mathrm{s}} \mathrm{f}_{\mathrm{y}} / 0.85 \mathrm{f}^{\prime} \mathrm{b} \mathrm{~b}=\left(6.00 \mathrm{in}^{2}\right)(60 \mathrm{ksi}) /[(0.85)(4 \mathrm{ksi})(24 ")]=4.4118^{\prime \prime} \\
& \mathrm{a}=\beta_{1} \mathrm{c}=\text { where } \beta=0.85{\text { for } \mathrm{f}^{\prime}{ }_{\mathrm{c}}=4,000 \mathrm{psi}}_{\mathrm{c}=\mathrm{a} / \beta 1=4.4118^{\prime \prime} / 0.85=5.1903 "} \begin{array}{c}
\varepsilon_{\mathrm{s}}=(\mathrm{d}-\mathrm{c})\left(\varepsilon_{\mathrm{u}}\right) / \mathrm{c}=\left(25.708^{\prime \prime}-5.1903 "\right)(0.003) / 5.1903^{\prime \prime}=0.01186>\varepsilon_{\mathrm{y}}=0.00207 \\
\varepsilon_{\mathrm{t}} \cong \varepsilon_{\mathrm{s}}=0.01186>0.005 \therefore \text { Tension-controlled Section } \therefore \phi=0.9 \\
\phi \mathrm{M}_{\mathrm{n}}=\phi \mathrm{A}_{\mathrm{s}} \mathrm{f}_{\mathrm{y}}(\mathrm{~d}-\mathrm{a} / 2)=\left[(0.9)\left(6.00 \mathrm{in}^{2}\right)(60 \mathrm{ksi})\left(25.708^{\prime \prime}-4.4118^{\prime \prime} / 2\right)\right] /(12 \mathrm{in} / \mathrm{ft})= \\
\quad=634.56 \mathrm{k}-\mathrm{ft}>631.35 \mathrm{k}-\mathrm{ft} \therefore \mathrm{OK}
\end{array}
\end{aligned}
$$

Small bars were selected at the supports because the bars have to be hooked into the exterior supports and there may not be enough room for a standard hook on larger bars.
b) Positive-moment Region
$\mathrm{A}_{\mathrm{s}, \text { req }}=3.43 \mathrm{in}^{2}>\mathrm{A}_{\mathrm{s}, \min }=2.14 \mathrm{in}^{2} \therefore \mathrm{OK}$
Use (8) \#6 bars in two rows $\left[\mathrm{A}_{\mathrm{s}}=(8)\left(0.44 \mathrm{in}^{2}\right)=3.52 \mathrm{in}^{2}>3.43 \mathrm{in}^{2} \therefore \mathrm{OK}\right]$
$\mathrm{a}=\mathrm{A}_{\mathrm{s}} \mathrm{f}_{\mathrm{y}} / 0.85 \mathrm{f}^{\prime}{ }_{\mathrm{c}} \mathrm{b}=\left(3.52 \mathrm{in}^{2}\right)(60 \mathrm{ksi}) /[(0.85)(4 \mathrm{ksi})(24 ")]=2.5882 "$
$\mathrm{a}=\beta_{1} \mathrm{c}=$ where $\beta=0.85$ for $\mathrm{f}^{\prime}{ }_{\mathrm{c}}=4,000 \mathrm{psi}$
$\mathrm{c}=\mathrm{a} / \beta 1=2.5882^{\prime \prime} / 0.85=3.0450 "$
$\varepsilon_{\mathrm{s}} \cong(\mathrm{d}-\mathrm{c})\left(\varepsilon_{\mathrm{u}}\right) / \mathrm{c}=\left(25.708^{\prime \prime}-3.0450 \prime \prime\right)(0.003) / 3.0450 "=0.02233>\varepsilon_{\mathrm{y}}=0.00207$
$\varepsilon_{\mathrm{t}} \cong \varepsilon_{\mathrm{s}}=0.02233>0.005 \therefore$ Tension-controlled Section $\therefore \phi=0.9$
$\phi \mathrm{M}_{\mathrm{n}}=\phi \mathrm{A}_{\mathrm{s}} \mathrm{f}_{\mathrm{y}}(\mathrm{d}-\mathrm{a} / 2)=(0.9)\left(3.52 \mathrm{in}^{2}\right)(60 \mathrm{ksi})\left(25.708^{\prime \prime}-2.5882 " / 2\right) /(12 \mathrm{in} / \mathrm{ft})=$ $=386.72 \mathrm{k}-\mathrm{ft}>376.87 \mathrm{k}-\mathrm{ft} \therefore \mathrm{OK}$

5) Check the distribution of the reinforcement (spacing requirements).

a) Negative-moment Region
$\mathrm{c}_{\mathrm{c}}=2.25$ in. cover +0.5 in. stirrups $=2.75^{\prime \prime}$
The maximum bar spacing is:

$$
\begin{aligned}
& s=15\left(40,000 / f_{s}\right)-2.5 c_{c} \\
& f_{s}=(2 / 3)\left(f_{y}\right)=(2 / 3)(60,000 \mathrm{ksi})=40,000 \mathrm{ksi} \\
& s=15(40,000 / 40,000)-(2.5)\left(2.75^{\prime \prime}\right)=8.125^{\prime \prime}
\end{aligned}
$$

Spacing of bars is less than 8.125 " by inspection.
Minimum bar spacing:

$$
\begin{aligned}
& \mathrm{s}_{\mathrm{c}}=\max \text { of }\left[1 ", \mathrm{~d}_{\mathrm{b}},(4 / 3) \mathrm{s}_{\mathrm{a}}\right] ; \text { Assume } \mathrm{s}_{\mathrm{a}}=1 " \text { aggregate } \\
& \mathrm{s}_{\mathrm{c}}=\max \text { of }\left[1 ", 0.875 ",(4 / 3)\left(1^{\prime \prime}\right)=1.333 "\right] ; \text { Assume } \mathrm{s}_{\mathrm{a}}=1 " \text { aggregate } \\
& \mathrm{s}_{\mathrm{c}}=1.333^{\prime \prime}
\end{aligned}
$$

Side spacing and cover:

$$
\begin{aligned}
& \mathrm{b}>(\mathrm{n})\left(\mathrm{d}_{\mathrm{b}}\right)+(\mathrm{n}-1)\left(\mathrm{s}_{\mathrm{c}}\right)+2 \mathrm{~d}_{\mathrm{tr}}+2 \mathrm{c}_{\mathrm{c}} \\
& 24^{\prime \prime}>(5)\left(0.875^{\prime \prime}\right)+(5-1)\left(1.333^{\prime \prime}\right)+(2)\left(0.5^{\prime \prime}\right)+(2)\left(2.25^{\prime \prime}\right) \\
& 24^{\prime \prime}>15.21 " \therefore \text { OK }
\end{aligned}
$$

b) Positive-moment Region

The maximum bar spacing is $8.125 "$. Spacing of bars is less than $8.125^{\prime \prime}$ by inspection.

Minimum bar spacing $=1.333 "$

Side spacing and cover:

$$
\begin{aligned}
& \mathrm{b}>(\mathrm{n})\left(\mathrm{d}_{\mathrm{b}}\right)+(\mathrm{n}-1)\left(\mathrm{s}_{\mathrm{c}}\right)+2 \mathrm{~d}_{\mathrm{tr}}+2 \mathrm{c}_{\mathrm{c}} \\
& 24 ">(4)\left(0.75^{\prime \prime}\right)+(4-1)(1.333 \prime)+(2)(0.5 \prime)+(2)\left(2.75^{\prime \prime}\right) \\
& 24 ">12.50 " \therefore \text { OK }
\end{aligned}
$$

6) Design the shear reinforcement.

a) The critical section for shear is located at the support. ACI Code Section 11.4.6.1 requires stirrups if $\mathrm{V}_{\mathrm{u}} \geq \phi \mathrm{V}_{\mathrm{c}} / 2$

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{c}}=2 \lambda \sqrt{ } \mathrm{f}^{\prime}{ }_{\mathrm{c}} \mathrm{~b}_{\mathrm{w}} \mathrm{~d}=(2)(1.0) \sqrt{ } 4000 \mathrm{psi}\left(24^{\prime \prime}\right)\left(25.708^{\prime}\right) / 1000=78.04 \mathrm{kips} \\
& \mathrm{~V}_{\mathrm{c}} / 2=78.04 \mathrm{kips} / 2=39.02 \mathrm{kips} \\
& \mathrm{~V}_{\mathrm{u}} / \phi=(102.52 \mathrm{kips}) /(0.75)=136.69 \mathrm{kips}>\mathrm{V}_{\mathrm{c}} / 2=39.02 \mathrm{kips}
\end{aligned}
$$

\therefore Stirrups are required.
b) Determine shear strength required by shear reinforcing.

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{s}}=\mathrm{V}_{\mathrm{u}} / \phi-\mathrm{V}_{\mathrm{c}}=[(102.52 \mathrm{kips}) /(0.75)]-78.04 \mathrm{kips}=58.65 \mathrm{kips} \\
& \mathrm{~V}_{\mathrm{s}} \leq 8 \sqrt{\mathrm{f}}^{\prime}{ }_{\mathrm{c}} \mathrm{~b}_{\mathrm{w}} \mathrm{~d}=8 \sqrt{ } 4000 \mathrm{psi}(24 ")\left(25.708^{\prime \prime}\right) / 1000=312.18 \mathrm{kips} \therefore \text { OK }
\end{aligned}
$$

c) Determine maximum spacing of shear reinforcing (ACI 318-08 Sections 11.4.5.1 and 11.4.5.3).

$$
\begin{aligned}
& \text { For } \mathrm{V}_{\mathrm{s}} \leq 8 \sqrt{ } \mathrm{f}^{\prime}{ }^{\prime} \mathrm{b}_{\mathrm{w}} \mathrm{~d}: \mathrm{s}_{\max }=\min \text { of }\left\{\mathrm{d} / 2,24^{\prime \prime}\right\} \\
& \mathrm{d} / 2=25.708^{\prime \prime} / 2=12.854 " \\
& \mathrm{~s}_{\text {max }}=12 "
\end{aligned}
$$

d) Determine minimum shear reinforcement (ACI 318-08 Section 11.4.6.3).

$$
\begin{aligned}
& \mathrm{A}_{\mathrm{v}, \min }=\max \text { of }\left\{0.75 \sqrt{ } \mathrm{f}^{\prime}{ }_{\mathrm{c}} \mathrm{~b}_{\mathrm{w}} \mathrm{~s} / \mathrm{f}_{\mathrm{yt}}, 50 \mathrm{~b}_{\mathrm{w}} \mathrm{~s} / \mathrm{f}_{\mathrm{yt}}\right\} \\
& 0.75 \sqrt{ } \mathrm{f}^{\prime}{ }_{\mathrm{c}} \mathrm{~b}_{\mathrm{w}} \mathrm{~s} / \mathrm{fyt}_{\mathrm{yt}}=0.75 \sqrt{ } 4000 \mathrm{psi}\left(24^{\prime \prime}\right)(12 ") / 60,000 \mathrm{psi}=0.23 \mathrm{in}^{2}
\end{aligned}
$$

$$
50 \mathrm{~b}_{\mathrm{w}} \mathrm{~s} / \mathrm{f}_{\mathrm{yt}}=50\left(24^{\prime \prime}\right)\left(12^{\prime \prime}\right) / 60,000 \mathrm{psi}=0.24 \mathrm{in}^{2}
$$

$\therefore \mathrm{A}_{\mathrm{v}, \text { min }}=0.24 \mathrm{in}^{2}$

$$
\mathrm{s}=\mathrm{A}_{\mathrm{v}} \mathrm{f}_{\mathrm{yt}} \mathrm{~d} / \mathrm{V}_{\mathrm{s}}=\left(0.24 \mathrm{in}^{2}\right)(60 \mathrm{ksi})\left(25.708^{\prime \prime}\right) / 58.65 \mathrm{kips}=6.312 "
$$

Use \#4 stirrups @ 6" as minimum shear reinforcement.
e) Design the shear reinforcement.
$V_{s}=A_{v} f_{y t} d / s$
Rearranging: $\mathrm{s}=\mathrm{A}_{\mathrm{v}} \mathrm{f}_{\mathrm{yt}} \mathrm{d} / \mathrm{V}_{\mathrm{s}}=\left(0.24 \mathrm{in}^{2}\right)(60 \mathrm{ksi})\left(25.708^{\prime \prime}\right) / 58.65 \mathrm{kips}=6.312^{\prime \prime}$
Use \#4 stirrups.
For \#4 stirrups: $\left(\mathrm{A}_{\mathrm{v}}=2\right.$ legs $\left.\mathrm{x} 0.20 \mathrm{in}^{2} / \mathrm{leg}=0.40 \mathrm{in}^{2}>0.24 \mathrm{in}^{2} \therefore \mathrm{OK}\right)$
$\mathrm{s}=\mathrm{A}_{\mathrm{v}} \mathrm{f}_{\mathrm{yt}} \mathrm{d} / \mathrm{V}_{\mathrm{s}}=\left(0.40 \mathrm{in}^{2}\right)(60 \mathrm{ksi})\left(25.708^{\prime \prime}\right) / 58.65 \mathrm{kips}=10.52 "$
Use (2) \#4 stirrups @ 10", starting 2" from face of support.
Use this stirrup layout throughout the entire length of the beam since lateral loads can change the shear forces (shear diagram) throughout the beam length (since the beam is part of a concrete moment frame).

FINAL DESIGN: Use $24 " \times 30 "$ beam with (10) \#7 bars for negative moment reinforcement (at the supports) and (8) \#6 bars for positive moment reinforcement.

COLUMN DESIGN

Load Case 1: $1.2 D+1.6 W+0.5 L_{r}$
Interior Column (worse case): Column 12 (bottom, interior)
$\mathrm{P}_{\mathrm{u}}=288.04 \mathrm{kips}$ (compression)
$M_{2}=-337.35 k-f t$
$\mathrm{M}_{1}=254.99 \mathrm{k}-\mathrm{ft}$

1) Preliminary column size

$$
\begin{aligned}
& \mathrm{A}_{\mathrm{g}(\text { trial })} \geq \mathrm{P}_{\mathrm{u}} /\left[0.40\left(\mathrm{f}^{\prime}{ }_{\mathrm{c}}+\mathrm{f}_{\mathrm{y}} \rho_{\mathrm{g}}\right)\right. \\
& \mathrm{A}_{\mathrm{g}(\text { trial })} \geq 288.04 \mathrm{kips} /[0.40(4 \mathrm{ksi}+(60 \mathrm{ksi})(0.015))]=146.96 \mathrm{in}^{2} \\
& \cong(12.12 \mathrm{in} .)^{2}
\end{aligned}
$$

Try $24 " \times 24$ " column (due to large moments on column)

2) Is the story being designed sway or nonsway?

$$
\begin{aligned}
& \mathrm{Q}=\left[\sum \mathrm{P}_{\mathrm{u}} \times \Delta_{\mathrm{o}}\right] /\left[\mathrm{V}_{\mathrm{us}} \times \mathrm{l}_{\mathrm{c}}\right] \\
& \quad \sum \mathrm{P}_{\mathrm{u}} \cong(2)(204.52) \mathrm{kips}+(3)(288.04) \mathrm{kips}=1273.16 \\
& \mathrm{~V}_{\mathrm{us}}=1 \mathrm{kip} \\
& \Delta_{\mathrm{o}}=0.006298^{\prime \prime} \\
& \mathrm{I}_{\mathrm{c}}=22.5^{\prime}=270^{\prime \prime} \\
& \mathrm{Q}=\left[(1273.16 \mathrm{kips})\left(0.006298^{\prime \prime}\right)\right] /\left[(1 \mathrm{kips})\left(270^{\prime \prime}\right)\right]=0.02970<0.05
\end{aligned}
$$

\therefore Nonsway (but assume sway story because $\sum \mathrm{P}_{\mathrm{u}}$ will actually be higher due to loads at other columns around the building at that level)

3) Are the columns slender?

$$
\mathrm{r}=0.3 \mathrm{~h}=(0.3)\left(24^{\prime \prime}\right)=7.2^{\prime \prime}
$$

$$
\mathrm{kl}_{\mathrm{u}} / \mathrm{r}=(1.2)\left(270^{\prime \prime}\right) / 7.2 "=45>22 \therefore \text { Column is slender }
$$

4) Find δ_{ns} for the column.

$$
\begin{aligned}
& \delta_{\mathrm{ns}}=\mathrm{C}_{\mathrm{m}} /\left[1-\left(\mathrm{P}_{\mathrm{u}} /\left(0.75 \mathrm{P}_{\mathrm{c}}\right)\right)\right] \geq 1.0 \\
& \mathrm{C}_{\mathrm{m}}=0.6+0.4\left(\mathrm{M}_{1} / \mathrm{M}_{2}\right)=0.6+0.4(254.99 \mathrm{k}-\mathrm{ft} /-337.35 \mathrm{k}-\mathrm{ft})=0.2977 \\
& \mathrm{P}_{\mathrm{c}}=\pi^{2} \mathrm{EI} /\left(\mathrm{kl}_{\mathrm{u}}\right)^{2}
\end{aligned}
$$

a) Calculation of EI values
$\mathrm{EI}=\left[0.2 \mathrm{E}_{\mathrm{c}} \mathrm{I}_{\mathrm{g}}+\mathrm{E}_{\mathrm{s}} \mathrm{I}_{\mathrm{se}}\right] /\left[1+\beta_{\mathrm{dns}}\right]$
$\mathrm{I}_{\mathrm{g}}=\mathrm{bh}^{3} / 12=(24 ")\left(24^{\prime \prime}\right)^{3} / 12=27,648 \mathrm{in}^{4}$
$\mathrm{E}_{\mathrm{c}}=57,000 \sqrt{ } \mathrm{f}^{\prime}{ }_{\mathrm{c}}=57,000 \sqrt{ } 4000 \mathrm{psi}=3,605,000 \mathrm{psi}=3605 \mathrm{ksi}$
$\mathrm{E}_{\mathrm{s}}=29,000 \mathrm{ksi}$
$\mathrm{I}_{\mathrm{se}} \cong 2.2 \rho_{\mathrm{g}} \gamma^{2} \times \mathrm{I}_{\mathrm{g}}$ (Table 12-1 in textbook "Reinforced Concrete Mechanics and Design by Wight and MacGregor)

Assume total steel ratio $\rho_{g}=0.015$
For a $24 " x 24 "$ column: $\gamma=[24 "-(2)(2.5 ")] / 24 "=0.7917$

$$
\mathrm{I}_{\mathrm{se}} \cong 2.2(0.015)(0.7917)^{2} \times 27,648 \mathrm{in}^{4}=571.82 \mathrm{in}^{4}
$$

Assuming that only the dead load is considered to cause a sustained axial load on the columns:

$$
\begin{aligned}
& \beta_{\mathrm{dns}}=(\text { maximum factored sustained axial load }) /(\text { total factored axial load }) \\
& \beta_{\mathrm{dns}}=(1.2)(190.87 \mathrm{kips}) / 288.04 \mathrm{kips}=0.7952
\end{aligned}
$$

$$
\mathrm{EI}=\left[(0.2)(3605 \mathrm{ksi})\left(27,648 \mathrm{in}^{4}\right)+(29,000 \mathrm{ksi})\left(571.82 \mathrm{in}^{4}\right)\right] /[1+0.7952]
$$

$$
=20,341,459 \mathrm{kip}-\mathrm{in}^{2}=20.3415 \times 10^{6} \mathrm{kip}-\mathrm{in}^{2}
$$

b) Calculation of P_{c}

$$
\mathrm{P}_{\mathrm{c}}=\pi^{2} \mathrm{EI} /\left(\mathrm{kl}_{\mathrm{u}}\right)^{2}=\pi^{2}\left(20,341,459 \mathrm{kip}-\mathrm{in}^{2}\right) /\left[\left(1 \times 270^{\prime \prime}\right)^{2}\right]=2753.94 \mathrm{kips}
$$

c) Calculation of δ_{ns}

$$
\begin{aligned}
\delta_{\mathrm{ns}} & =\mathrm{C}_{\mathrm{m}} /\left[1-\left(\mathrm{P}_{\mathrm{u}} /\left(0.75 \mathrm{P}_{\mathrm{c}}\right)\right)\right]=0.2977 /[1-(288.04 \mathrm{kips} /(0.75)(2753.94 \mathrm{kips}))] \\
& =0.3459 \therefore \text { Use } \delta_{\mathrm{ns}}=1.0
\end{aligned}
$$

Thus, the moments do not need to be magnified for this loading case.

5) Check initial column sections.

$$
\begin{aligned}
& \mathrm{e}=\mathrm{M}_{\mathrm{c} /} \mathrm{P}_{\mathrm{u}}=[(337.35 \mathrm{k}-\mathrm{ft})(12 \mathrm{in} / \mathrm{ft})] /(288.04 \mathrm{kips})=14.054^{\prime \prime} \\
& \mathrm{e} / \mathrm{h}=14.054^{\prime \prime} / 24^{\prime \prime}=0.5856
\end{aligned}
$$

Fig. A-9b (from textbook "Reinforced Concrete Mechanics and Design by Wight and MacGregor):

$$
\begin{aligned}
& \text { Using } \gamma=0.7917 \cong 0.75, \mathrm{e} / \mathrm{h}=0.5856 \text {, and } \rho_{\mathrm{g}}=0.015 \\
& \phi \mathrm{P}_{\mathrm{n}} / \mathrm{A}_{\mathrm{g}}=0.85 \mathrm{ksi} \\
& \mathrm{~A}_{\mathrm{g}} \geq \mathrm{P}_{\mathrm{u}} / 0.45 \mathrm{ksi}=288.04 \mathrm{kips} / 0.85 \mathrm{ksi}=338.87 \mathrm{in}^{2} \\
& \mathrm{~A}_{\mathrm{g}}=\left(24^{\prime \prime}\right)\left(24^{\prime \prime}\right)=576 \mathrm{in}^{2}>338.87 \mathrm{in}^{2} \therefore \mathrm{OK} \\
& \phi \mathrm{M}_{\mathrm{n}} / \mathrm{bh}^{2}=0.47 \mathrm{ksi} \\
& \mathrm{bh}^{2} \geq[(337.35 \mathrm{k}-\mathrm{ft})(12 \mathrm{in} / \mathrm{ft})] / 0.47 \mathrm{ksi}=8,613.19 \mathrm{in}^{3} \\
& \mathrm{~h} \geq \sqrt{ }\left[\left(8,613.19 \mathrm{in}^{3}\right) /(\mathrm{b})\right]=\sqrt{ }\left[\left(13,042 \mathrm{in}^{3}\right) /\left(24^{\prime \prime}\right)\right]=18.94 " \\
& \mathrm{~h}=24^{\prime \prime}>18.94^{\prime \prime} \therefore \mathrm{OK}
\end{aligned}
$$

6) Select the longitudinal bars for this column.

$$
\mathrm{A}_{\mathrm{st}}=\rho_{\mathrm{g}} \mathrm{~A}_{\mathrm{g}}=(0.015)\left(576 \mathrm{in}^{2}\right)=8.64 \mathrm{in}^{2}
$$

Select (12) \#8 bars $\left[\mathrm{A}_{\mathrm{s}}=(12)\left(0.79 \mathrm{in}^{2}\right)=9.48 \mathrm{in}^{2}>8.64 \mathrm{in}^{2} \therefore \mathrm{OK}\right]$

It is OK to be a little conservative due to the corrosive natatorium environment.

$$
\begin{aligned}
\phi \mathrm{P}_{\mathrm{n}}(\max) & =\phi \mathrm{x} 0.80\left[0.85 \mathrm{f}^{\prime}{ }_{\mathrm{c}}\left(\mathrm{~A}_{\mathrm{g}}-\mathrm{A}_{\mathrm{st}}\right)+\mathrm{f}_{\mathrm{y}} \mathrm{~A}_{\mathrm{st}}\right] \\
& =(0.65)(0.80)\left[(0.85)(4 \mathrm{ksi})\left(576 \mathrm{in}^{2}-9.48 \mathrm{in}^{2}\right)+(60 \mathrm{ksi})\left(9.48 \mathrm{in}^{2}\right)\right] \\
& =1297.38 \mathrm{kips}>288.04 \mathrm{kips} \therefore \text { OK }
\end{aligned}
$$

Load Case 2: $1.2 D+1.6 L_{r}+0.8 W$

Interior Column (worst case): Column 12 (bottom, interior)

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{u}}=411.13 \text { kips (compression) } \\
& \mathrm{M}_{2}=-170.99 \mathrm{k}-\mathrm{ft} \\
& \mathrm{M}_{1}=131.23 \mathrm{k}-\mathrm{ft}
\end{aligned}
$$

1) Preliminary column size

$$
\begin{aligned}
& \mathrm{A}_{\mathrm{g}(\text { trial })} \geq \mathrm{P}_{\mathrm{u}} /\left[0.40\left(\mathrm{f}^{\prime}{ }_{\mathrm{c}}+\mathrm{f}_{\mathrm{y}} \rho_{\mathrm{g}}\right)\right. \\
& \mathrm{A}_{\mathrm{g}(\text { trial })} \geq 411.13 \mathrm{kips} /[0.40(4 \mathrm{ksi}+(60 \mathrm{ksi})(0.015))]=209.76 \mathrm{in}^{2} \\
& \cong(14.48 \mathrm{in} .)^{2}
\end{aligned}
$$

Try 24 " $x 24$ " column (due to large moments on column)

2) Is the story being designed sway or nonsway?

$$
\begin{aligned}
& \mathrm{Q}=\left[\sum \mathrm{P}_{\mathrm{u}} \times \Delta_{\mathrm{o}}\right] /\left[\mathrm{V}_{\mathrm{us}} \times \mathrm{l}_{\mathrm{c}}\right] \\
& \quad \sum \mathrm{P}_{\mathrm{u}} \cong(2)(261.32) \mathrm{kips}+(3)(411.12) \mathrm{kips}=1756 \mathrm{kips} \\
& \mathrm{~V}_{\mathrm{us}}=1 \mathrm{kip} \\
& \Delta_{\mathrm{o}}=0.006298^{\prime \prime} \\
& 1_{\mathrm{c}}=22.5^{\prime}=270^{\prime \prime}
\end{aligned}
$$

$$
\mathrm{Q}=\left[(1756 \mathrm{kips})\left(0.006298^{\prime \prime}\right)\right] /\left[(1 \mathrm{kips})\left(270^{\prime \prime}\right)\right]=0.04096<0.05
$$

\therefore Nonsway (but assume sway story because $\sum \mathrm{P}_{\mathrm{u}}$ will actually be higher due to
loads at other columns around the building at that level)

3) Are the columns slender?

$$
\begin{aligned}
& \mathrm{r}=0.3 \mathrm{~h}=(0.3)(24 ")=7.2 " \\
& \mathrm{kl}_{\mathrm{u}} / \mathrm{r}=(1.2)\left(270^{\prime \prime}\right) / 7.2^{\prime \prime}=45>22 \therefore \text { Column is slender }
\end{aligned}
$$

4) Find $\delta_{\text {ns }}$ for the column.

$$
\begin{aligned}
& \delta_{\mathrm{ns}}=\mathrm{C}_{\mathrm{m}} /\left[1-\left(\mathrm{P}_{\mathrm{u}} /\left(0.75 \mathrm{P}_{\mathrm{c}}\right)\right)\right] \geq 1.0 \\
& \mathrm{C}_{\mathrm{m}}=0.6+0.4\left(\mathrm{M}_{1} / \mathrm{M}_{2}\right)=0.6+0.4(131.23 \mathrm{k}-\mathrm{ft} /-170.99 \mathrm{k}-\mathrm{ft})=0.2930 \\
& \mathrm{P}_{\mathrm{c}}=\pi^{2} \mathrm{EI} /\left(\mathrm{kl}_{\mathrm{u}}\right)^{2}
\end{aligned}
$$

a) Calculation of EI values

$$
\begin{aligned}
& \mathrm{EI}=\left[0.2 \mathrm{E}_{\mathrm{c}} \mathrm{I}_{\mathrm{g}}+\mathrm{E}_{\mathrm{S}} \mathrm{I}_{\mathrm{se}} / /\left[1+\beta_{\mathrm{dns}}\right]\right. \\
& \mathrm{I}_{\mathrm{g}}=\mathrm{bh}^{3} / 12=(24 ")(24 ")^{3} / 12=27,648 \mathrm{in}^{4} \\
& \mathrm{E}_{\mathrm{c}}=57,000 \sqrt{ } \mathrm{f}^{\prime}{ }_{\mathrm{c}}=57,000 \sqrt{ } 4000 \mathrm{psi}=3,605,000 \mathrm{psi}=3605 \mathrm{ksi} \\
& \mathrm{E}_{\mathrm{s}}=29,000 \mathrm{ksi}
\end{aligned}
$$

$\mathrm{I}_{\text {se }} \cong 2.2 \rho_{\mathrm{g}} \gamma^{2} \times \mathrm{I}_{\mathrm{g}}$ (Table 12-1 in textbook "Reinforced Concrete Mechanics and Design by Wight and MacGregor)

Assume total steel ratio $\rho_{\mathrm{g}}=0.015$
For a $24 " \times 24 "$ column: $\gamma=[24 "-(2)(2.5 ")] / 24 "=0.7917$
$\mathrm{I}_{\mathrm{se}} \cong 2.2(0.015)(0.7917)^{2} \times 27,648 \mathrm{in}^{4}=571.82 \mathrm{in}^{4}$
Assuming that only the dead load is considered to cause a sustained axial load on the columns:

$$
\begin{aligned}
& \left.\quad \beta_{\mathrm{dns}}=(\text { maximum factored sustained axial load }) / \text { (total factored axial load }\right) \\
& \beta_{\mathrm{dns}}=(1.2)(190.87 \mathrm{kips}) / 411.13 \mathrm{kips}=0.5571 \\
& \mathrm{EI}=\left[(0.2)(3605 \mathrm{ksi})\left(27,648 \mathrm{in}^{4}\right)+(29,000 \mathrm{ksi})\left(571.82 \mathrm{in}^{4}\right)\right] /[1+0.5571] \\
& =23,451,922.16 \mathrm{kip}-\mathrm{in}^{2}=23.4519 \times 10^{6}{\mathrm{kip}-\mathrm{in}^{2}}^{2}
\end{aligned}
$$

b) Calculation of P_{c}

$$
\mathrm{P}_{\mathrm{c}}=\pi^{2} \mathrm{EI} /\left(\mathrm{kl}_{\mathrm{u}}\right)^{2}=\pi^{2}\left(23,451,922.16 \mathrm{kip}-\mathrm{in}^{2}\right) /\left[\left(1 \times 270^{\prime \prime}\right)^{2}\right]=3175.05 \mathrm{kips}
$$

c) Calculation of δ_{ns}

$$
\begin{aligned}
\delta_{\mathrm{ns}} & =\mathrm{C}_{\mathrm{m}} /\left[1-\left(\mathrm{P}_{\mathrm{u}} /\left(0.75 \mathrm{P}_{\mathrm{c}}\right)\right)\right]=0.2930 /[1-(411.13 \mathrm{kips} /(0.75)(3175.05 \mathrm{kips}))] \\
& =0.3541 \therefore \text { Use } \delta_{\mathrm{ns}}=1.0
\end{aligned}
$$

Thus, the moments do not need to be magnified for this loading case.

5) Check initial column sections.

$\mathrm{e}=\mathrm{M}_{\mathrm{c} /} \mathrm{P}_{\mathrm{u}}=[(170.99 \mathrm{k}-\mathrm{ftt})(12 \mathrm{in} / \mathrm{ft})] /(411.13 \mathrm{kips})=4.9908^{\prime \prime}$
$\mathrm{e} / \mathrm{h}=4.9908^{\prime \prime} / 24^{\prime \prime}=0.2080$
Fig. A-9b (from textbook "Reinforced Concrete Mechanics and Design by Wight and MacGregor):

$$
\begin{aligned}
& \text { Using } \gamma=0.7917 \cong 0.75, \mathrm{e} / \mathrm{h}=0.2080, \text { and } \rho_{\mathrm{g}}=0.015 \\
& \phi \mathrm{P}_{\mathrm{n}} / \mathrm{A}_{\mathrm{g}}=1.70 \mathrm{ksi} \\
& \mathrm{~A}_{\mathrm{g}} \geq \mathrm{P}_{\mathrm{u}} / 0.45 \mathrm{ksi}=411.13 \mathrm{kips} / 1.70 \mathrm{ksi}=241.84 \mathrm{in}^{2} \\
& \mathrm{~A}_{\mathrm{g}}=(24 ")\left(24^{\prime \prime}\right)=576 \mathrm{in}^{2}>241.84 \mathrm{in}^{2} \therefore \mathrm{OK} \\
& \phi \mathrm{M}_{\mathrm{n}} / \mathrm{bh}^{2}=0.34 \mathrm{ksi} \\
& \mathrm{bh}^{2} \geq[(170.99 \mathrm{k}-\mathrm{ft})(12 \mathrm{in} / \mathrm{ft})] / 0.34 \mathrm{ksi}=6,034.94 \mathrm{in}^{3} \\
& \mathrm{~h} \geq \sqrt{ }\left[\left(6,034.94 \mathrm{in}^{3}\right) /(\mathrm{b})\right]=\sqrt{ }\left[\left(13,042 \mathrm{in}^{3}\right) /\left(24^{\prime \prime}\right)\right]=15.86^{\prime \prime} \\
& \mathrm{h}=24^{\prime \prime}>15.86^{\prime \prime} \therefore \mathrm{OK}
\end{aligned}
$$

6) Select the longitudinal bars for this column.

$$
\mathrm{A}_{\mathrm{st}}=\rho_{\mathrm{g}} \mathrm{~A}_{\mathrm{g}}=(0.015)\left(576 \mathrm{in}^{2}\right)=8.64 \mathrm{in}^{2}
$$

Select (12) \#8 bars $\left[\mathrm{A}_{\mathrm{s}}=(12)\left(0.79 \mathrm{in}^{2}\right)=9.48 \mathrm{in}^{2}>8.64 \mathrm{in}^{2} \therefore \mathrm{OK}\right]$
It is OK to be a little conservative due to the corrosive natatorium environment.

$$
\begin{aligned}
\phi \mathrm{P}_{\mathrm{n}}(\max) & =\phi \mathrm{x} 0.80\left[0.85 \mathrm{f}^{\prime}\left(\mathrm{A}_{\mathrm{g}}-\mathrm{A}_{\mathrm{st}}\right)+\mathrm{f}_{\mathrm{y}} \mathrm{~A}_{\mathrm{st}}\right] \\
& =(0.65)(0.80)\left[(0.85)(4 \mathrm{ksi})\left(576 \mathrm{in}^{2}-9.48 \mathrm{in}^{2}\right)+(60 \mathrm{ksi})\left(9.48 \mathrm{in}^{2}\right)\right] \\
& =1297.38 \mathrm{kips}>288.04 \mathrm{kips} \therefore \text { OK }
\end{aligned}
$$

FINAL DESIGN: Use 24" x 24" column with (12) \#8 bars.

Concrete Moment Frame - East/West Direction

Beams
*Use rebar cover of $1.5(1.5 ")=2.25 "$ due to corrosive environment (natatorium) (see ACI 7.7.6.1)

Shear and Moment (Unfactored) for Columns and Sloped Concrete Beams (E/W Direction)				
	Beam 13/14	West Column (C.L. 1.8)	East Column (C.L. 2) - Bottom	East Column (C.L. 2) - Top
V_{D} (Top or Left)	-22.29	-4.08	-4.08	0.00
V_{D} (Bottom or Right)	28.65	-4.08	-4.08	0.00
V_{L} (Top or Left)	-6.89	-4.92	-4.92	0.00
V_{L} (Bottom or Right)	34.57	-4.92	-4.92	0.00
V_{E} (Top or Left)	11.43	36.62	6.00	8.40
V_{E} (Bottom or Right)	30.06	36.62	6.00	8.40
$\mathrm{V}_{\mathrm{E}, \mathrm{ReV} \text { ersed }}$ (Top or Left)	-11.43	-36.62	-6.00	-8.40
$V_{\text {E, Reversed }}($ Bottom or Right)	-30.06	-36.62	-6.00	-8.40
V_{W} (Top or Left)	7.26	23.01	3.37	5.68
V_{w} (Bottom or Right)	18.91	23.01	3.37	5.68
$\mathrm{V}_{\text {w, REVERSED }}$ (Top or Left)	-7.26	-23.01	-3.37	-5.68
$\mathrm{V}_{\text {w, Reversed }}$ (Bottom or Right)	-18.91	-23.01	-3.37	-5.68
M_{D} (Top or Left)	-50.27	50.27	0.00	0.00
M_{D} (Bottom or Right)	-91.83	7.41	-91.83	0.00
M_{L} (Top or Left)	-60.64	60.64	0.00	0.00
M_{L} (Bottom or Right)	-110.79	8.94	-110.79	0.00
M_{E} (Top or Left)	136.74	-136.74	-8.88	0.00
M_{E} (Bottom or Right)	-155.88	247.73	126.21	147.00
$\mathrm{M}_{\mathrm{E,REVERSEd}}$ (Top or Left)	-136.74	136.74	8.88	0.00
$\mathrm{M}_{\mathrm{E}, \mathrm{REV} \text { ersed }}$ (Bottom or Right)	155.88	-247.73	-126.21	-147.00
M_{W} (Top or Left)	86.20	-86.20	0.16	0.00
M_{W} (Bottom or Right)	-99.16	155.61	75.97	99.31
$\mathrm{M}_{\text {W,REVERSEd }}$ (Top or Left)	-86.20	86.20	-0.16	0.00
$\mathrm{M}_{\text {w,ReVersed }}$ (Bottom or Right)	99.16	-155.36	-75.97	-99.31
P_{D}	-21.35	-30.59	-28.65	0.00
P_{L}	-25.75	-36.90	-34.57	0.00
P_{E}	35.29	30.06	-30.06	0.00
$\mathrm{P}_{\text {E, Reversed }}$	-35.29	-30.06	30.06	0.00
P_{W}	22.11	18.91	-18.91	0.00
$\mathrm{P}_{\mathrm{w}, \mathrm{REVERSED}}$	-22.11	-18.91	18.91	0.00
M_{D} (Midspan)	65.63	28.84	-45.92	0.00
M_{L} (Midspan)	79.19	34.79	-55.40	0.00
M_{E} (Midspan)	20.49	55.49	58.66	73.50
$\mathrm{M}_{\mathrm{E}, \mathrm{REVERSED}}$ (Midspan)	-20.49	-55.49	-58.66	-73.50
M_{W} (Midspan)	12.42	34.58	38.06	49.66
$\mathrm{M}_{\text {W,REVERSEd }}$ (Midspan)	-12.42	-34.58	-38.06	-49.66

Table Accounts for Torsional Effects

Jason Kukorlo
Structural Option
Dr. Linda M. Hanagan
Farquhar Park Aquatic Center
York, PA
Final Report

1.2D +/-1.0E + 1.0L				
Max $\mathrm{V}_{\text {TOP/LEFT }}$ (kips)	-45.07	-46.44	-15.83	-8.40
Max $\mathrm{V}_{\text {bottomright }}$ (kips)	99.01	26.79	-15.83	8.40
Max M ${ }_{\text {TOP/LEFT }}$ (ft-kips)	-257.71	257.71	-8.88	0.00
Max $\mathrm{M}_{\text {BOtTом/RIGHT }}$ (ft-kips)	-376.87	265.56	-347.20	147.00
Max M MIDSPAN (${ }^{\text {ft-kips }}$)	178.44	124.89	-169.16	73.50
Max P_{u} (kips)	-86.66	-103.67	-99.01	0.00

1.2D + 1.6L				
Max $\mathrm{V}_{\text {TOP/LEFT }}$ (kips)	-37.77	-12.78	-12.78	0.00
Max $\mathrm{V}_{\text {bottom/right }}(\mathrm{kips}$)	89.70	-12.78	-12.78	0.00
Max M ${ }_{\text {Top/LEFT }}$ (ft-kips)	-157.35	157.35	0.00	0.00
Max M ${ }_{\text {BOttom/RIGHT }}$ (ft-kips)	-287.46	23.20	-287.46	0.00
Max M ${ }_{\text {MIDSPAN }}$ (ft-kips)	205.46	90.27	-143.73	0.00
Max P_{u} (kips)	-66.82	-95.75	-89.70	0.00

1.2D + 1.6W + 1.0L				
Max $\mathrm{V}_{\text {TOP/LEFT }}$ (kips)	-45.24	-46.63	-15.21	-9.08
Max $\mathrm{V}_{\text {Bottom/RIGHt }}$ (kips)	99.20	-46.63	-15.21	-9.08
Max M ${ }_{\text {Top/LEFT }}(\mathrm{ft}$-kips)	-258.88	258.88	-0.25	-158.90
Max $\mathrm{M}_{\text {BOttom/RIGHT }}$ (ft -kips)	-379.64	266.81	-342.54	158.90
Max M MIDSPAN (${ }^{\text {(ft-kips) }}$	177.83	124.73	-171.39	79.45
Max P_{u} (kips)	-86.74	-103.86	-99.20	0.00

Table Accounts for Torsional Effects

BEAM DESIGN:

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{u}, \max }=99.20 \mathrm{kips}(1.2 \mathrm{D}+1.6 \mathrm{~W}+1.0 \mathrm{~L}) \\
& \mathrm{M}_{\mathrm{u}, \max } \text { at Supports }=-379.64 \mathrm{k}-\mathrm{ft}(1.2 \mathrm{D}+1.6 \mathrm{~W}+1.0 \mathrm{~L}) \\
& \mathrm{M}_{\mathrm{u}, \max } \text { at Midspan }=205.46 \mathrm{k}-\mathrm{ft}(1.2 \mathrm{D}+1.6 \mathrm{~L})
\end{aligned}
$$

Use normal-weight concrete with $\mathrm{f}^{\prime}{ }_{\mathrm{c}}=4000 \mathrm{psi}$
$\mathrm{f}_{\mathrm{y}}=60,000 \mathrm{psi}$ for flexural reinforcement
$\mathrm{f}_{\mathrm{yt}}=60,000 \mathrm{psi}$ for stirrups

1) Choose the actual size of the beam stem.

a) Calculate the minimum depth based on deflections.

Use worst case scenario (use "simply supported" criteria).
ACI Table 9.5(a):
Minimum thickness, $\mathrm{h}=\mathrm{L} / 16=\left[\left(23^{\prime}\right)(12 \mathrm{in} / \mathrm{ft})\right] / 16=17.25^{\prime \prime}$
b) Determine the minimum depth based on the maximum negative moment.
$\mathrm{M}_{\mathrm{u}, \text { max }}$ at Supports $=379.64 \mathrm{k}-\mathrm{ft}$
$\rho($ initial $)=\left[\left(\beta_{1} \mathrm{f}^{\prime} \mathrm{c}\right) /\left(4 \mathrm{f}_{\mathrm{y}}\right)\right]=[(0.85)(4 \mathrm{ksi}) /(4)(60 \mathrm{ksi})]=0.0142$
$\omega=\rho\left(\mathrm{f}_{\mathrm{y}} / \mathrm{f}_{\mathrm{c}}\right)=(0.0142)(60 \mathrm{ksi} / 4 \mathrm{ksi})=0.213$
$\mathrm{R}=\omega \mathrm{f}^{\prime} \mathrm{c}(1-0.59 \omega)=(0.213)(4 \mathrm{ksi})[1-(0.59)(0.213)]=0.745 \mathrm{ksi}$
$\mathrm{bd}^{2} \geq \mathrm{M}_{\mathrm{u}} / \phi \mathrm{R}=[(379.64 \mathrm{ft}-\mathrm{kips})(12 \mathrm{in} / \mathrm{ft})] /[(0.9)(0.745 \mathrm{ksi})]=6794.45 \mathrm{in}^{3}$
Assuming $\mathrm{b}=24 \mathrm{in}$.

$$
\mathrm{d} \geq 16.83 \text { in. }
$$

$\mathrm{h} \cong 16.83^{\prime \prime}+3.25^{\prime \prime}=20.08^{\prime \prime}$ (accounting for 2.25 " clear cover due to corrosive environment; see ACI 7.7.6.1; (1.5)(1.5") $\left.=2.25^{\prime \prime}\right)$

Try $\mathrm{h}=26^{\prime \prime}>20.76$ " \therefore Meets deflection criteria

$$
\mathrm{d} \cong 26^{\prime \prime}-3.25^{\prime \prime}=22.75^{\prime \prime}
$$

c) Check the shear capacity of the beam.

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{u}}=\phi\left(\mathrm{V}_{\mathrm{c}}+\mathrm{V}_{\mathrm{s}}\right) \\
& \mathrm{V}_{\mathrm{u}, \max }=99.20 \mathrm{kips}
\end{aligned}
$$

From ACI Code Section 11.2.1.1, the nominal V_{c} is

$$
V_{c}=2 \lambda \sqrt{ } f^{\prime}{ }^{\prime} b_{w} d=(2)(1.0) \sqrt{ } 4000 \mathrm{psi}(24 ")(22.75 ") / 1000=69.06 \mathrm{kips}
$$

ACI Code Section 11.4.7.9 sets the maximum nominal V_{s} as

$$
\mathrm{V}_{\mathrm{s}}=8 \sqrt{ } \mathrm{f}_{\mathrm{c}} \mathrm{c}_{\mathrm{w}} \mathrm{~d}=(8) \sqrt{ } 4000 \mathrm{psi}\left(24^{\prime \prime}\right)\left(22.75^{\prime \prime}\right) / 1000=276.26 \mathrm{kips}
$$

Thus, the absolute maximum $\phi \mathrm{V}_{\mathrm{n}}=0.75(69.06 \mathrm{k}+276.26 \mathrm{k})=258.99 \mathrm{kips}$

$$
\geq \mathrm{V}_{\mathrm{u}, \text { max }}=99.20 \mathrm{kips} \therefore \text { OK }
$$

d) Summary. Use:
b $=24$ "
$\mathrm{h}=26$ "
$\mathrm{d}=22.75^{\prime \prime}$
2) Compute the dead load of the stem, and recompute the total moment.

Weight of $24 " \times 26^{\prime \prime}$ concrete beam $=\left[(24 ")\left(26^{\prime \prime}\right) / 144 \mathrm{in}^{2} / \mathrm{ft}^{2}\right]\left[\left(150 \mathrm{lb} / \mathrm{ft}^{3}\right) / 1000\right]$

$$
=0.650 \mathrm{k} / \mathrm{ft}
$$

Original dead load $=2.6524 \mathrm{k} / \mathrm{ft}$
New dead load $=2.6524 \mathrm{k} / \mathrm{ft}+(0.650 \mathrm{k} / \mathrm{ft}-0.375 \mathrm{k} / \mathrm{ft})=2.9274 \mathrm{k} / \mathrm{ft}$
$(2.9274 \mathrm{k} / \mathrm{ft}) /(2.6524 \mathrm{k} / \mathrm{ft})=1.1037$
New $\mathrm{M}_{\mathrm{u}, \text { max }}$ at Supports $\cong(1.2)(-91.83 \mathrm{k}-\mathrm{ft} * 1.1037)+(1.6)(-99.16 \mathrm{k}-\mathrm{ft})-100.79=$

$$
=381.07 \mathrm{k}-\mathrm{ft}
$$

New $\mathrm{M}_{\mathrm{u}, \text { max }}$ at Midspan $\cong(1.2)(65.63 \mathrm{k}-\mathrm{ft} * 1.1037)+(1.6)(79.19 \mathrm{k}-\mathrm{ft})=213.63 \mathrm{k}-\mathrm{ft}$
New $V_{u, \max } \cong(1.2)\left(28.65 \mathrm{k}^{*} 1.1037\right)+(1.6)(18.91 \mathrm{k})+34.57 \mathrm{k}=102.77 \mathrm{k}$
$<\phi \mathrm{V}_{\mathrm{n}}=258.99$ kips \therefore Shear capacity is still OK.

3) Design the flexural reinforcement.

a) Compute the area of steel required at the point of maximum negative moment.
$A_{s} \geq \mathrm{M}_{\mathrm{u}} /\left[\phi \mathrm{f}_{\mathrm{y}}(\mathrm{d}-\mathrm{a} / 2)\right] \cong \mathrm{M}_{\mathrm{u}} /\left[\phi \mathrm{f}_{\mathrm{y}}(\mathrm{jd})\right]$
Because there is negative moment at the support, the beams acts as a rectangular beam with compression in the web. Assume that $\mathrm{j}=0.9$ and $\phi=0.90$

$$
\mathrm{A}_{\mathrm{s}} \cong(381.07 \mathrm{k}-\mathrm{ft})(12 \mathrm{in} / \mathrm{ft}) /\left[(0.9)(60 \mathrm{ksi})(0.9)\left(22.75^{\prime \prime}\right)\right]=4.14 \mathrm{in}^{2}
$$

This value can be improved with one iteration to find the depth of the compression stress block, a:

$$
\mathrm{a}=\mathrm{A}_{\mathrm{s}} \mathrm{f}_{\mathrm{y}} / 0.85 \mathrm{f}^{\prime}{ }_{\mathrm{c}} \mathrm{~b}=\left(4.14 \mathrm{in}^{2}\right)(60 \mathrm{ksi}) /[(0.85)(4 \mathrm{ksi})(24 ")]=3.041 "
$$

and then recalculating the required A_{s} with this calculated value of a :

$$
\begin{aligned}
\mathrm{A}_{\mathrm{s}} \geq \mathrm{M}_{\mathrm{u}} /\left[\phi \mathrm{f}_{\mathrm{y}}(\mathrm{~d}-\mathrm{a} / 2)\right]= & (381.07 \mathrm{k}-\mathrm{ft})(12 \mathrm{in} / \mathrm{ft}) /[(0.9)(60 \mathrm{ksi})(22.75 "-3.041 " / 2)] \\
= & 3.99 \mathrm{in}^{2}
\end{aligned}
$$

Before proceeding, it must be confirmed that this is a tension-controlled section. This can be done by showing that the neutral axis, c , is less than $3 / 8$ of d .

$$
\begin{aligned}
& \mathrm{a}=\mathrm{A}_{\mathrm{s}} \mathrm{f}_{\mathrm{y}} / 0.85 \mathrm{f}^{\prime}{ }_{\mathrm{c}} \mathrm{~b}=\left(3.99 \mathrm{in}^{2}\right)(60 \mathrm{ksi}) /[(0.85)(4 \mathrm{ksi})(24 ")]=2.933 " \\
& \mathrm{c}=\mathrm{a} / \beta_{1}=2.9333^{\prime \prime} / 0.85=3.451 "<(3 / 8)(\mathrm{d})=(3 / 8)\left(22.75^{\prime \prime}\right)=8.531 "
\end{aligned}
$$

\therefore Section is tension-controlled and can be designed using $\phi=0.90$
b) Compute the area of steel required at the point of maximum positive moment.

$$
A_{s} \geq M_{u} /\left[\phi f_{\mathrm{y}}(\mathrm{~d}-\mathrm{a} / 2)\right] \cong \mathrm{M}_{\mathrm{u}} /\left[\phi \mathrm{f}_{\mathrm{y}}(\mathrm{jd})\right]
$$

Assume that the compression zone is rectangular, and take $\mathrm{j}=0.95$ for the first calculation of A_{s}.

$$
\mathrm{A}_{\mathrm{s}} \cong(213.63 \mathrm{k}-\mathrm{ft})(12 \mathrm{in} / \mathrm{ft}) /\left[(0.9)(60 \mathrm{ksi})(0.95)\left(22.75^{\prime \prime}\right)\right]=2.20 \mathrm{in} .^{2}
$$

This value can be improved with one iteration to find the depth of the compression stress block, a:

$$
\mathrm{a}=\mathrm{A}_{\mathrm{s}} \mathrm{f}_{\mathrm{y}} / 0.85 \mathrm{f}^{\prime}{ }_{\mathrm{c}} \mathrm{~b}=\left(2.20 \mathrm{in}^{2}\right)(60 \mathrm{ksi}) /[(0.85)(4 \mathrm{ksi})(24 ")]=1.618^{\prime \prime}
$$

and then recalculating the required A_{s} with this calculated value of a :

$$
\begin{aligned}
\mathrm{A}_{\mathrm{s}} \geq \mathrm{M}_{\mathrm{u}} /\left[\phi \mathrm{f}_{\mathrm{y}}(\mathrm{~d}-\mathrm{a} / 2)\right]= & (213.63 \mathrm{k}-\mathrm{ft})(12 \mathrm{in} / \mathrm{ft}) /\left[(0.9)(60 \mathrm{ksi})\left(22.75 "-1.618^{\prime \prime} / 2\right)\right] \\
& =2.16 \mathrm{in}^{2}
\end{aligned}
$$

Before proceeding, it must be confirmed that this is a tension-controlled section. This can be done by showing that the neutral axis, c , is less than $3 / 8$ of d .

$$
\begin{aligned}
& \mathrm{a}=\mathrm{A}_{\mathrm{s}} \mathrm{f}_{\mathrm{y}} / 0.85 \mathrm{f}^{\prime}{ }_{\mathrm{c}} \mathrm{~b}=\left(2.16 \mathrm{in}^{2}\right)(60 \mathrm{ksi}) /\left[(0.85)(4 \mathrm{ksi})\left(24^{\prime \prime}\right)\right]=1.591 " \\
& \mathrm{c}=\mathrm{a} / \beta_{1}=1.591^{\prime \prime} / 0.85=1.872^{\prime \prime}<(3 / 8)(\mathrm{d})=(3 / 8)\left(22.75^{\prime \prime}\right)=8.531^{\prime \prime}
\end{aligned}
$$

\therefore Section is tension-controlled and can be designed using $\phi=0.90$
c) Calculate the minimum reinforcement (using ACI Code Section 10.5.1).

$$
\begin{aligned}
& \mathrm{A}_{\mathrm{s}, \text { min }}=\text { max. of: } \\
& \quad\left[3 \sqrt{ } \mathrm{f}^{\prime}{ }_{\mathrm{c}} / \mathrm{f}_{\mathrm{y}}\right] \mathrm{b}_{\mathrm{w}} \mathrm{~d}=[3 \sqrt{ } 4000 \mathrm{psi} / 60000 \mathrm{psi}]\left(24^{\prime \prime}\right)\left(22.75^{\prime \prime}\right)=1.73 \mathrm{in}^{2} \\
& 200 \mathrm{~b}_{\mathrm{w}} \mathrm{~d} / \mathrm{f}_{\mathrm{y}}=(200)\left(24^{\prime \prime}\right)\left(22.75^{\prime \prime}\right) / 60000 \mathrm{psi}=1.82 \mathrm{in}^{2} \\
& \quad \therefore \mathrm{~A}_{\mathrm{s}, \text { min }}=1.82 \mathrm{in}^{2}
\end{aligned}
$$

4) Calculate the area of steel and select the bars.

a) Negative-moment Region

$$
\begin{aligned}
& \mathrm{A}_{\mathrm{s}, \text { req }}=3.99 \mathrm{in}^{2}>\mathrm{A}_{\mathrm{s}, \text { min }}=1.82 \mathrm{in}^{2} \therefore \mathrm{OK} \\
& \text { Use }(7) \# 7 \text { bars }\left[\mathrm{A}_{\mathrm{s}}=(7)\left(0.60 \mathrm{in}^{2}\right)=4.20 \mathrm{in}^{2}>3.99 \mathrm{in}^{2} \therefore \mathrm{OK}\right] \\
& \mathrm{a}=\mathrm{A}_{\mathrm{s}} \mathrm{f}_{\mathrm{y}} / 0.85 \mathrm{f}^{\prime} \mathrm{c} \mathrm{~b}=\left(4.20 \mathrm{in}^{2}\right)(60 \mathrm{ksi}) /[(0.85)(4 \mathrm{ksi})(24 ")]=3.088^{\prime \prime} \\
& \mathrm{a}=\beta_{1} \mathrm{c}=\text { where } \beta=0.85 \mathrm{for}^{\prime} \mathrm{f}_{\mathrm{c}}=4,000 \mathrm{psi} \\
& \mathrm{c}=\mathrm{a} / \beta 1=3.088^{\prime \prime} / 0.85=3.633^{\prime \prime} \\
& \mathrm{d}_{\mathrm{actual}}=26^{\prime \prime}-2.25^{\prime \prime}-0.5 "-(1 / 2)\left(0.875^{\prime \prime}\right)=22.8125 \\
& \begin{array}{l}
\varepsilon_{\mathrm{s}}=(\mathrm{d}-\mathrm{c})\left(\varepsilon_{\mathrm{u}}\right) / \mathrm{c}=\left(22.8125^{\prime \prime}-3.633^{\prime \prime}\right)(0.003) / 3.633 "=0.01584>\varepsilon_{\mathrm{y}}=0.00207 \\
\varepsilon_{\mathrm{t}} \cong \varepsilon_{\mathrm{s}}=0.01584>0.005 \therefore \text { Tension-controlled Section } \therefore \phi=0.9
\end{array} \\
& \phi \mathrm{M}_{\mathrm{n}}=\phi \mathrm{A}_{\mathrm{s}} \mathrm{f}_{\mathrm{y}}(\mathrm{~d}-\mathrm{a} / 2)=(0.9)\left(4.20 \mathrm{in}^{2}\right)(60 \mathrm{ksi})\left(22.8125^{\prime \prime}-3.088^{\prime \prime} / 2\right) /(12 \mathrm{in} / \mathrm{ft})= \\
& \quad=401.97 \mathrm{k}-\mathrm{ft}>381.07 \mathrm{k}-\mathrm{ft} \therefore \mathrm{OK}
\end{aligned}
$$

Small bars were selected at the supports because the bars have to be hooked into the exterior supports and there may not be enough room for a standard hook on larger bars.
b) Positive-moment Region
$\mathrm{A}_{\mathrm{s}, \text { req }}=2.16 \mathrm{in}^{2}>\mathrm{A}_{\mathrm{s}, \text { min }}=1.82 \mathrm{in}^{2} \therefore \mathrm{OK}$
Use (4) \#7 bars $\left[\mathrm{A}_{\mathrm{s}}=(4)\left(0.60 \mathrm{in}^{2}\right)=2.40 \mathrm{in}^{2}>2.16 \mathrm{in}^{2} \therefore \mathrm{OK}\right]$
$\mathrm{a}=\mathrm{A}_{\mathrm{s}} \mathrm{f}_{\mathrm{y}} / 0.85 \mathrm{f}^{\prime}{ }_{\mathrm{c}} \mathrm{b}=\left(2.40 \mathrm{in}^{2}\right)(60 \mathrm{ksi}) /[(0.85)(4 \mathrm{ksi})(24 ")]=1.765^{\prime \prime}$

$$
\begin{aligned}
& \mathrm{a}=\beta_{1} \mathrm{c}=\text { where } \beta=0.85 \text { for } \mathrm{f}^{\prime}{ }_{\mathrm{c}}=4,000 \mathrm{psi} \\
& \mathrm{c}=\mathrm{a} / \beta 1=1.765^{\prime \prime} / 0.85=2.076^{\prime \prime} \\
& \varepsilon_{\mathrm{s}} \cong(\mathrm{~d}-\mathrm{c})\left(\varepsilon_{\mathrm{u}}\right) / \mathrm{c}=\left(22.8125^{\prime \prime}-2.076^{\prime \prime}\right)(0.003) / 2.076^{\prime \prime}=0.02997>\varepsilon_{\mathrm{y}}=0.00207 \\
& \varepsilon_{\mathrm{t}} \cong \varepsilon_{\mathrm{s}}=0.02997>0.005 \therefore \text { Tension-controlled Section } \therefore \phi=0.9 \\
& \phi \mathrm{M}_{\mathrm{n}}=\phi \mathrm{A}_{\mathrm{s}} \mathrm{f}_{\mathrm{y}}(\mathrm{~d}-\mathrm{a} / 2)=(0.9)\left(2.40 \mathrm{in}^{2}\right)(60 \mathrm{ksi})\left(22.8125^{\prime \prime}-1.765^{\prime \prime} / 2\right) /(12 \mathrm{in} / \mathrm{ft})= \\
& \quad=236.84 \mathrm{k}-\mathrm{ft}>213.63 \mathrm{k}-\mathrm{ft} \therefore \text { OK }
\end{aligned}
$$

5) Check the distribution of the reinforcement (spacing requirements).

a) Negative-moment Region
$\mathrm{c}_{\mathrm{c}}=2.25$ in. cover +0.5 in. stirrups $=2.75$ "
The maximum bar spacing is

$$
\begin{aligned}
& \mathrm{s}=15\left(40,000 / \mathrm{f}_{\mathrm{s}}\right)-2.5 \mathrm{c}_{\mathrm{c}} \\
& \mathrm{f}_{\mathrm{s}}=(2 / 3)\left(\mathrm{f}_{\mathrm{y}}\right)=(2 / 3)(60,000 \mathrm{ksi})=40,000 \mathrm{ksi} \\
& \mathrm{~s}=15(40,000 / 40,000)-(2.5)\left(2.75^{\prime}\right)=8.125^{\prime \prime}
\end{aligned}
$$

Spacing of bars is less than $8.125^{\prime \prime}$ by inspection.
Minimum bar spacing:

$$
\begin{aligned}
& \mathrm{s}_{\mathrm{c}}=\max \text { of }\left[1^{\prime \prime}, \mathrm{d}_{\mathrm{b}},(4 / 3) \mathrm{s}_{\mathrm{a}}\right] ; \text { Assume } \mathrm{s}_{\mathrm{a}}=1 " \text { aggregate } \\
& \mathrm{s}_{\mathrm{c}}=\max \text { of }\left[1^{\prime \prime}, 0.875^{\prime \prime},(4 / 3)\left(1^{\prime \prime}\right)=1.333^{\prime \prime}\right] ; \text { Assume } \mathrm{s}_{\mathrm{a}}=1 " \text { aggregate } \\
& \mathrm{s}_{\mathrm{c}}=1.333^{\prime \prime}
\end{aligned}
$$

Side spacing and cover:

$$
\begin{aligned}
& \mathrm{b}>(\mathrm{n})\left(\mathrm{d}_{\mathrm{b}}\right)+(\mathrm{n}-1)\left(\mathrm{s}_{\mathrm{c}}\right)+2 \mathrm{~d}_{\mathrm{tr}}+2 \mathrm{c}_{\mathrm{c}} \\
& 24^{\prime \prime}>(7)\left(0.875^{\prime \prime}\right)+(7-1)\left(1.333^{\prime \prime}\right)+(2)\left(0.5^{\prime \prime}\right)+(2)\left(2.25^{\prime \prime}\right) \\
& 24^{\prime \prime}>19.62^{\prime \prime} \therefore \text { OK }
\end{aligned}
$$

b) Positive-moment Region

The maximum bar spacing is $8.125^{\prime \prime}$. Spacing of bars is less than $8.125^{\prime \prime}$ by inspection.

Minimum bar spacing $=1.333$ "
Side spacing and cover:

$$
\begin{aligned}
& \mathrm{b}>(\mathrm{n})\left(\mathrm{d}_{\mathrm{b}}\right)+(\mathrm{n}-1)\left(\mathrm{s}_{\mathrm{c}}\right)+2 \mathrm{~d}_{\mathrm{tr}}+2 \mathrm{c}_{\mathrm{c}} \\
& 24^{\prime \prime}>(4)(0.875 ")+(4-1)(1.333 ")+(2)(0.5 ")+(2)\left(2.25^{\prime \prime}\right) \\
& 24^{\prime \prime}>14.00^{\prime \prime} \therefore \text { OK }
\end{aligned}
$$

6) Design the shear reinforcement.

a) The critical section for shear is located at the support. ACI Code Section 11.4.6.1 requires stirrups if $\mathrm{V}_{\mathrm{u}} \geq \phi \mathrm{V}_{\mathrm{c}} / 2$

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{c}}=2 \lambda \sqrt{ } \mathrm{f}^{\prime} \mathrm{b}_{\mathrm{w}} \mathrm{~d}=(2)(1.0) \sqrt{ } 4000 \mathrm{psi}(24 ")(22.8175 ") / 1000=69.27 \mathrm{kips} \\
& \mathrm{~V}_{\mathrm{c}} / 2=69.27 \mathrm{kips} / 2=34.63 \mathrm{kips} \\
& \mathrm{~V}_{\mathrm{u}} / \phi=(102.77 \mathrm{kips}) /(0.75)=137.03 \mathrm{kips}>\mathrm{V}_{\mathrm{c}} / 2=34.63 \mathrm{kips}
\end{aligned}
$$

\therefore Stirrups are required.
b) Determine shear strength required by shear reinforcing.

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{s}}=\mathrm{V}_{\mathrm{u}} / \phi-\mathrm{V}_{\mathrm{c}}=[(102.77 \mathrm{kips}) /(0.75)]-69.27 \mathrm{kips}=67.76 \mathrm{kips} \\
& \mathrm{~V}_{\mathrm{s}} \leq 8 \sqrt{ } \mathrm{f}^{\prime}{ }_{\mathrm{c}} \mathrm{~b}_{\mathrm{w}} \mathrm{~d}=8 \sqrt{ } 4000 \mathrm{psi}(24 ")\left(22.8125^{\prime \prime}\right) / 1000=277.02 \mathrm{kips} \therefore \mathrm{OK}
\end{aligned}
$$

c) Determine maximum spacing of shear reinforcing (ACI 318-08 Sections 11.4.5.1 and 11.4.5.3).

$$
\begin{aligned}
& \text { For } \mathrm{V}_{\mathrm{s}} \leq 8 \sqrt{ } \mathrm{f}^{\prime}{ }_{\mathrm{c}} \mathrm{~b}_{\mathrm{w}} \mathrm{~d}: \mathrm{s}_{\max }=\min \text { of }\left\{\mathrm{d} / 2,24^{\prime \prime}\right\} \\
& \mathrm{d} / 2=22.8125^{\prime \prime} / 2=11.41 " \\
& \mathrm{~s}_{\max }=11 "
\end{aligned}
$$

d) Determine minimum shear reinforcement (ACI 318-08 Section 11.4.6.3).

$$
\begin{aligned}
& \mathrm{A}_{\mathrm{v}, \min }=\max \text { of }\left\{0.75 \sqrt{ } \mathrm{f}^{\prime} \mathrm{c}_{\mathrm{w}} \mathrm{~s} / \mathrm{f}_{\mathrm{yt}}, 50 \mathrm{~b}_{\mathrm{w}} \mathrm{~s} / \mathrm{f}_{\mathrm{yt}}\right\} \\
& 0.75 \sqrt{ } \mathrm{f}_{\mathrm{c}} \mathrm{~b}_{\mathrm{w}} / \mathrm{f}_{\mathrm{yt}}=0.75 \sqrt{ } 4000 \mathrm{psi}(24 ")(11 ") / 60,000 \mathrm{psi}=0.209 \mathrm{in}^{2} \\
& 50 \mathrm{~b}_{\mathrm{w}} \mathrm{f} \mathrm{f}_{\mathrm{yt}}=50(24 ")(11 ") / 60,000 \mathrm{psi}=0.220 \mathrm{in}^{2} \\
& \therefore \mathrm{~A}_{\mathrm{v}, \min }=0.220 \mathrm{in}^{2}
\end{aligned}
$$

Use \#3 stirrups @ 11 " as minimum shear reinforcement.

$$
\left(\mathrm{A}_{\mathrm{v}}=2 \text { legs } \mathrm{x} 0.11 \mathrm{in}^{2} / \mathrm{leg}=0.22 \mathrm{in}^{2} \geq 0.220 \mathrm{in}^{2} \therefore \mathrm{OK}\right)
$$

e) Design the shear reinforcement.
$V_{s}=A_{v} f_{y t} d / s$
Rearranging: $\mathrm{s}=\mathrm{A}_{\mathrm{v}} \mathrm{f}_{\mathrm{yt}} \mathrm{d} / \mathrm{V}_{\mathrm{s}}=\left(0.22 \mathrm{in}^{2}\right)(60 \mathrm{ksi})\left(22.8125^{\prime \prime}\right) / 67.76 \mathrm{kips}=4.44^{\prime \prime}$
Usually absolute minimum " s " is 4 ".
Use (2) \#3 stirrups @ 4", starting 2" from face of support.
Or use \#4 stirrups instead of \#3 stirrups.
For \#4 stirrups: $\left(\mathrm{A}_{\mathrm{v}}=2\right.$ legs $\left.\mathrm{x} 0.20 \mathrm{in}^{2} / \mathrm{leg}=0.40 \mathrm{in}^{2}>0.200 \mathrm{in}^{2} \therefore \mathrm{OK}\right)$
$\mathrm{s}=\mathrm{A}_{\mathrm{v}} \mathrm{f}_{\mathrm{yt}} \mathrm{d} / \mathrm{V}_{\mathrm{s}}=\left(0.40 \mathrm{in}^{2}\right)(60 \mathrm{ksi})\left(22.8125^{\prime}\right) / 67.76 \mathrm{kips}=8.08^{\prime \prime}$
Use (2) \#4 stirrups @ 8", starting 2" from face of support.
Use this stirrup layout throughout the entire length of the beam since lateral loads can change the shear forces (shear diagram) throughout the beam length (since the beam is part of a concrete moment frame).

FINAL DESIGN: Use 24" x 26" beam with (7) \#7 bars in a single layer for negative moment reinforcement (at the supports) and (4) \#7 bars for positive moment reinforcement. Use (2) \#4 stirrups @ 8 " throughout length of beam.

COLUMN DESIGN:

Columns at Column Line 1.8:
These columns were already designed for gravity forces and lateral forces in the North/South direction. The design resulted in 24 "x24" concrete columns with (12) \#8 bars.

Check this column size and reinforcement for gravity loads and lateral loads in the East/West direction. The total P_{u} will be the same (may vary depending on load cases), but the moments $\left(M_{1}\right.$ and $\left.M_{2}\right)$ at the top and bottom of the column will change. The P_{u} used for the North/South design already been calculated and that value for P_{u} will thus be used for this column check.

Controlling Load Case: $1.2 \mathrm{D}+1.6 \mathrm{~L}$
$\mathrm{P}_{\mathrm{u}}=177.98 \mathrm{kips}$ (same as the design for the North/South direction)
$\mathrm{M}_{2}=266.81 \mathrm{k}$ - ft
$\mathrm{M}_{1}=258.88 \mathrm{k}$ - ft

1) Preliminary column size

$$
\begin{aligned}
& \mathrm{A}_{\mathrm{g}(\text { trial })} \geq \mathrm{P}_{\mathrm{u}} /\left[0.40\left(\mathrm{f}^{\prime}{ }_{\mathrm{c}}+\mathrm{f}_{\mathrm{y}} \rho_{\mathrm{g}}\right)\right. \\
& \mathrm{A}_{\mathrm{g}(\text { trial })} \geq 177.98 \mathrm{kips} /[0.40(4 \mathrm{ksi}+(60 \mathrm{ksi})(0.015))]=90.81 \mathrm{in}^{2} \\
& \cong(9.53 \mathrm{in} .)^{2}
\end{aligned}
$$

Try $24 " \times 24$ " column (already designed for North/South direction)

2) Is the story being designed sway or nonsway?

$$
\begin{aligned}
& \mathrm{Q}=\left[\sum \mathrm{P}_{\mathrm{u}} \times \Delta_{\mathrm{o}}\right] /\left[\mathrm{V}_{\mathrm{us}} \times \mathrm{l}_{\mathrm{c}}\right] \\
& \quad \sum \mathrm{P}_{\mathrm{u}} \cong(5)(177.98 \mathrm{k})=889.90 \mathrm{k} \\
& \mathrm{~V}_{\mathrm{us}}=1 \mathrm{kip} \\
& \Delta_{\mathrm{o}}=0.014789^{\prime \prime} \\
& 1_{\mathrm{c}}=10.5^{\prime}=126^{\prime \prime} \\
& \mathrm{Q}=\left[(889.90 \mathrm{kips})\left(0.014789^{\prime \prime}\right)\right] /\left[(1 \mathrm{kip})\left(126^{\prime \prime}\right)\right]=0.01045<0.05
\end{aligned}
$$

\therefore Nonsway (but assume sway story because $\sum \mathrm{P}_{\mathrm{u}}$ will actually be higher due to loads at other columns around the building at that level)

3) Are the columns slender?

$\mathrm{r}=0.3 \mathrm{~h}=(0.3)\left(24^{\prime \prime}\right)=7.2^{\prime \prime}$
$\mathrm{kl}_{\mathrm{u}} / \mathrm{r}=(1.2)\left(126^{\prime \prime}\right) / 7.2^{\prime \prime}=21<22$ (for a sway frame) \therefore Column is not slender

2) Compute γ

For a $24 " \times 24 "$ column: $\gamma=[24 "-(2)(2.5 ")] / 24 "=0.7917$
3) Use interaction diagrams to determine ρ_{g}

$$
\begin{aligned}
& \phi \mathrm{P}_{\mathrm{n}} / \mathrm{A}_{\mathrm{g}}=\mathrm{P}_{\mathrm{u}} / \mathrm{A}_{\mathrm{g}}=177.98 \mathrm{k} /\left[(24 ")\left(24^{\prime \prime}\right)\right]=0.3099 \\
& \phi \mathrm{M}_{\mathrm{n}} / \mathrm{A}_{\mathrm{g}} \mathrm{~h}=\mathrm{M}_{\mathrm{u}} / \mathrm{Ag}_{\mathrm{g}} \mathrm{~h}=(379.64 \mathrm{k}-\mathrm{ft})(12 \mathrm{in} / \mathrm{ft}) /\left[(24 " \times 24 ")\left(24^{\prime \prime}\right)\right]=0.3295
\end{aligned}
$$

From Fig. A-9b (from "Reinforced Concrete Mechanics and Design" by White and MacGregor):

$$
\begin{aligned}
\rho_{\mathrm{g}}=0.010<0.016 & \text { (provided) } \therefore \text { OK } \\
\rho_{\mathrm{g} . \text { provided }} & =(12)\left(0.79 \text { in }^{2}\right) /[(24 ")(24 ")]=0.016
\end{aligned}
$$

The 24 " $\times 24$ "column with (12) \#8 bars is OK
PCA Column was also used to check the 24 " $\times 24$ " column with (12) \#8 bars $(\mathrm{Pu}, \mathrm{Mu})=(177.98 \mathrm{k}, 266.81 \mathrm{k}-\mathrm{ft})$

This point lies within the boundaries on the interaction diagram from PCA column (see diagram below).
\therefore Column is OK

Wood Braced Frame - East/West Direction

Design of Diagonal Members:
$\mathrm{P}_{\mathrm{u}}=13.72 \mathrm{k}$ (compression)

Analyze Member Buckling About x Axis:

$$
\begin{aligned}
& \left(1_{\mathrm{e}} / \mathrm{d}\right)_{\max }=50 \\
& \left(1_{\mathrm{e}} / \mathrm{d}\right)_{x}=\left[(1.0)\left(26.2552^{\prime}\right)(12 \mathrm{in} / \mathrm{ft})\right] / \mathrm{d} \leq 50 \\
& \mathrm{~d} \geq 1_{\mathrm{e}} / 50=\left[\left(26.2552^{\prime}\right)(12 \mathrm{in} / \mathrm{ft})\right] / 50=6.30^{\prime \prime}
\end{aligned}
$$

Analyze Member Bucking About y Axis:

$$
\begin{aligned}
& \left(l_{\mathrm{e}} / \mathrm{d}\right)_{\max }=50 \\
& \left(1_{\mathrm{e}} / \mathrm{d}\right)_{\mathrm{y}}=\left[(1.0)\left(13.1276^{\prime}\right)(12 \mathrm{in} / \mathrm{ft})\right] / \mathrm{d} \leq 50 \\
& \mathrm{~d} \geq \mathrm{l}_{\mathrm{e}} / 50=\left[\left(13.1276^{\prime}\right)(12 \mathrm{in} / \mathrm{ft})\right] / 50=3.15^{\prime \prime}
\end{aligned}
$$

Try $5^{\prime \prime \prime} \times 67 / 8^{\prime \prime}$
$\left(l_{\mathrm{e}} / \mathrm{d}\right)_{x}=\left[\left(26.2662^{\prime}\right)(12 \mathrm{in} / \mathrm{ft})\right] / 6.875^{\prime \prime}=45.846$
$\left(\mathrm{l}_{\mathrm{e}} / \mathrm{d}\right)_{y}=\left[\left(13.1276^{\prime}\right)(12 \mathrm{in} / \mathrm{ft})\right] / 5^{\prime \prime}=31.5062$
$\mathrm{F}_{\mathrm{c}}=2300 \mathrm{psi}$ (Glulam ID \#50, S.P.) (p. 66 NDS Supplement)
$\mathrm{E}_{\text {min }}=980,000 \mathrm{psi}$
$C_{D}=1.6$ (for wind load))
$C_{M}=0.73$ for F_{c} (p. 64, NDS Supplement)
$C_{M}=0.833$ for E and $E_{\text {min }}$ (p. 64, NDS Supplement)
$\mathrm{C}_{\mathrm{t}}=1.0$
$\mathrm{E}^{\prime}{ }_{\text {min }}=\left(\mathrm{E}_{\text {min }}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)=(980,000)(0.833)(1.0)=816,340 \mathrm{psi}$
$\mathrm{c}=0.9$ (glulam)
$\mathrm{F}_{\mathrm{cE}}=\left[0.822 \mathrm{E}^{\prime}{ }_{\text {min }}\right] /\left[\left(\mathrm{l}_{\mathrm{e}} / \mathrm{d}\right)^{2}\right]=[(0.822)(816,340 \mathrm{psi})] /\left[(45.846)^{2}\right]=319.257 \mathrm{psi}$
$\mathrm{F}_{\mathrm{c}}^{*}=\mathrm{F}_{\mathrm{c}}\left(\mathrm{C}_{\mathrm{D}}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)=(2300 \mathrm{psi})(1.6)(0.73)(1.0)=2686.4 \mathrm{psi}$
$\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}=319.257 / 2686.4=0.1188$

$$
\begin{aligned}
{[1} & \left.+\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}^{*}\right] /(2 \mathrm{c})=[1+0.1188] /[(2)(0.9)]=0.6216 \\
\mathrm{C}_{\mathrm{P}} & =\left\{\left[1+\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}^{*}\right] /(2 \mathrm{c})\right\}-\sqrt{ }\left\{\left[\left(1+\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}^{*}\right) /(2 \mathrm{c})\right]^{2}-\left[\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}^{*}\right] / \mathrm{c}\right\} \\
& =\{0.6216\}-\sqrt{ }\left\{[0.6216]^{2}-[0.1188 / 0.9]\right\} \\
& =0.1173
\end{aligned}
$$

$\mathrm{F}^{\prime}{ }_{\mathrm{c}}=\mathrm{F}_{\mathrm{c}}{ }^{*}\left(\mathrm{C}_{\mathrm{P}}\right)=(2686.4 \mathrm{psi})(0.1173)=315.004 \mathrm{psi}$

$$
\mathrm{P}=\left(\mathrm{F}^{\prime}{ }_{\mathrm{c}}\right)(\mathrm{A})
$$

$\mathrm{A}_{\text {req'd }}=\mathrm{P} / \mathrm{F}^{\prime}{ }_{\mathrm{c}}=13,720 \mathrm{lb} / 315.004 \mathrm{psi}=43.56 \mathrm{in}^{2}>\mathrm{A}_{\text {provided }}=34.38 \mathrm{in}^{2} \therefore$ N.G.
Try 6 3/4" x 6 7/8"
$\left(1_{e} / \mathrm{d}\right)_{x}=\left[\left(26.2662^{\prime}\right)(12 \mathrm{in} / \mathrm{ft})\right] / 6.875^{\prime \prime}=45.846$
$\left(l_{\mathrm{e}} / \mathrm{d}\right)_{\mathrm{y}}=\left[\left(13.1276^{\prime}\right)(12 \mathrm{in} / \mathrm{ft})\right] / 6.75^{\prime \prime}=23.338$
Same C_{P} and Areq'd
$\mathrm{A}_{\mathrm{req}{ }^{\prime} \mathrm{d}}=\mathrm{P} / \mathrm{F}^{\prime}{ }_{\mathrm{c}}=13,720 \mathrm{lb} / 315.004 \mathrm{psi}=43.56 \mathrm{in}^{2}<\mathrm{A}_{\text {provided }}=46.41 \mathrm{in}^{2} \therefore$ OK
Use 6 3/4" x 6 7/8" Southern Pine glulam ID \#50

Wind Columns

Try truss design with $3^{\prime}-0$ " depth:

LOAD COMBINATION: D+W (Combined Bending and Axial Forces) (Controls)

"Top Chord"

$$
\begin{aligned}
& \mathrm{P}_{\max }=22.238 \mathrm{k}+(30 \mathrm{psf} / 53.1 \mathrm{psf})(5.5522 \mathrm{k})=25.375 \mathrm{k}(\text { Compression }) \\
& \mathrm{M}_{\max }=4.1695 \mathrm{ft}-\mathrm{k}=4169.5 \mathrm{ft}-\mathrm{lb}=50,034 \mathrm{in}-\mathrm{lb}
\end{aligned}
$$

Try 6 3/4" $\times 11$ "
$\mathrm{F}_{\mathrm{c}}=2300 \mathrm{psi}$ (Glulam ID \#50, S.P.) (p. 66 NDS Supplement)
$\mathrm{F}_{\mathrm{b}}=2100 \mathrm{psi}$ (Glulam ID \#50, S.P.) (p. 66 NDS Supplement)
$\mathrm{A}=74.25 \mathrm{in}^{2}$
$\mathrm{S}=136.1 \mathrm{in}^{3}$
$\mathrm{E}_{\text {min }}=980,000 \mathrm{psi}$
Axial Load: $\mathrm{P}_{\max }=25,375 \mathrm{lb}$ (Compression)
Maximum Moment: $\mathrm{M}_{\max }=50,034 \mathrm{in}-\mathrm{lb}$
$\mathrm{L}=6.667^{\prime}$

Axial Load:
$\mathrm{f}_{\mathrm{c}}=\mathrm{P} / \mathrm{A}=25,375 \mathrm{lb} / 74.25 \mathrm{in}^{2}=341.751 \mathrm{psi}$
$\left(1_{\mathrm{e}} / \mathrm{d}\right)_{\mathrm{x}}=\left[\left(6.667^{\prime}\right)(12 \mathrm{in} / \mathrm{ft})\right] / 11^{\prime \prime}=7.2727<50 \therefore$ OK
$\left(1_{\mathrm{e}} / \mathrm{d}\right)_{y}=\left[\left(13.333^{\prime}\right)(12 \mathrm{in} / \mathrm{ft})\right] / 6.75^{\prime \prime}=23.7037<50 \quad \therefore$ OK
$\left(l_{e} / d\right)_{\max }=\left(l_{e} / d\right)_{x}=23.7037$
The larger slenderness ratio governs the adjusted design value. Therefore, the weak axis of the member is critical, and $\left(l_{e} / d\right)_{y}$ is used to determine $F{ }_{c}$.
$\mathrm{C}_{\mathrm{D}}=1.6$ (for wind load; load combination $\mathrm{D}+\mathrm{W}$)
$C_{M}=0.73$ for F_{c} (p. 64, NDS Supplement)
$C_{M}=0.833$ for E and $E_{\text {min }}$ (p. 64, NDS Supplement)
$\mathrm{C}_{\mathrm{M}}=0.8$ for F_{b} (p. 64, NDS Supplement)
$\mathrm{C}_{\mathrm{t}}=1.0$
$\mathrm{E}^{\prime}{ }_{\text {min }}=\left(\mathrm{E}_{\text {min }}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)=(980,000)(0.833)(1.0)=816,340 \mathrm{psi}$
$\mathrm{c}=0.9$ (glulam)
$\mathrm{F}_{\mathrm{cE}}=\left[0.822 \mathrm{E}^{\prime}{ }_{\text {min }}\right] /\left[\left(\mathrm{l}_{\mathrm{e}} / \mathrm{d}\right)^{2}\right]=[(0.822)(816,340 \mathrm{psi})] /\left[(27.7037)^{2}\right]=874.314 \mathrm{psi}$
Here, $l_{\mathrm{e}} / \mathrm{d}$ is based on $\left(l_{e} / d\right)_{\text {max }}$.
$\mathrm{F}_{\mathrm{c}}{ }^{*}=\mathrm{F}_{\mathrm{c}}\left(\mathrm{C}_{\mathrm{D}}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)=(2300 \mathrm{psi})(1.6)(0.73)(1.0)=2686.4 \mathrm{psi}$
$\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}=874.314 / 2686.4=0.3255$
$\left[1+\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}\right] /(2 \mathrm{c})=[1+0.3255] /[(2)(0.9)]=0.7364$
$\mathrm{C}_{\mathrm{P}}=\left\{\left[1+\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}\right] /(2 \mathrm{c})\right\}-\sqrt{ }\left\{\left[\left(1+\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}{ }^{*}\right) /(2 \mathrm{c})\right]^{2}-\left[\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}\right] / \mathrm{c}\right\}$
$=\{0.7364\}-\sqrt{ }\left\{[0.7364]^{2}-[0.3255 / 0.9]\right\}$
$=0.3115$
$\mathrm{F}^{\prime}{ }_{\mathrm{c}}=\mathrm{F}_{\mathrm{c}}{ }^{*}\left(\mathrm{C}_{\mathrm{P}}\right)=(2686.4 \mathrm{psi})(0.3115)=836.723 \mathrm{psi}$
Axial stress ratio $=\mathrm{f}_{\mathrm{c}} / \mathrm{F}{ }_{\mathrm{c}}=(341.751 \mathrm{psi}) /(836.723 \mathrm{psi})=0.4084$

Net Section Check:

Assume connections will be made with (2) rows of $3 / 4$ " diameter bolts.
Assume the hole diameter is $1 / 16$ " larger than the bolt (for stress calculations only).

$$
\begin{aligned}
& \mathrm{A}_{\mathrm{n}}=\left(6.75^{\prime}\right)\left[11 "-(2)\left(0.8125^{\prime \prime}\right)\right]=63.28 \mathrm{in}^{2} \\
& \quad\left(3 / 4 "+1 / 16^{\prime \prime}=0.8125^{\prime \prime}\right) \\
& \mathrm{f}_{\mathrm{c}}= \mathrm{P} / \mathrm{A}_{\mathrm{n}}=25,375 \mathrm{lb} / 63.28 \mathrm{in}^{2}=400.988 \mathrm{psi} \\
& \mathrm{~F}_{\mathrm{c}}^{\prime}=\mathrm{F}_{\mathrm{c}}{ }^{*}=\mathrm{F}_{\mathrm{c}}\left(\mathrm{C}_{\mathrm{D}}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)\left(\mathrm{C}_{\mathrm{P}}\right)=(2300 \mathrm{psi})(1.6)(0.73)(1.0)(0.3115)=836.814 \mathrm{psi} \\
& \quad 836.814 \mathrm{psi}>400.988 \mathrm{psi} \therefore \mathrm{OK}
\end{aligned}
$$

Bending:

Bending is about the strong axis of the cross section. The adjusted bending design value for a glulam is governed by the smaller of two criteria: volume effect or lateral stability.
$\mathrm{M}=50,034 \mathrm{in}-\mathrm{lb}$
$\mathrm{S}=136.1 \mathrm{in}^{3}$
$\mathrm{f}_{\mathrm{b}}=\mathrm{M} / \mathrm{S}=50,034 \mathrm{in}-\mathrm{lb} / 136.1 \mathrm{in}^{3}=367.627 \mathrm{psi}$
$\mathrm{F}_{\mathrm{b}}=\mathrm{F}_{\mathrm{b}}\left(\mathrm{C}_{\mathrm{D}}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)\left(\mathrm{C}_{\mathrm{L}}\right)$ or
$\mathrm{F}_{\mathrm{b}}=\mathrm{F}_{\mathrm{b}}\left(\mathrm{C}_{\mathrm{D}}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)\left(\mathrm{C}_{\mathrm{V}}\right)$
For $\mathrm{C}_{\mathrm{L}}: 1_{\mathrm{u}} / \mathrm{d}=\left[\left(13.333^{\prime}\right)(12 \mathrm{in} / \mathrm{ft})\right] / 11^{\prime \prime}=14.545>7$

$$
\begin{aligned}
& \therefore \mathrm{l}_{\mathrm{e}}=1.631_{\mathrm{u}}+3 \mathrm{~d}=(1.63)[(13.333 \prime)(12 \mathrm{in} / \mathrm{ft})]+(3)(11 ")=293.799 " \\
& \mathrm{R}_{\mathrm{B}}=\sqrt{ } \mathrm{l}_{\mathrm{e}} \mathrm{~d} / \mathrm{b}^{2}=\sqrt{ }\left[(293.799 ")(11 ") /\left(6.75^{\prime \prime}\right)^{2}\right]=8.422 \\
& \mathrm{~F}_{\mathrm{bE}}=1.20 \mathrm{E}_{\min }^{\prime} / \mathrm{R}_{\mathrm{B}}{ }^{2}=[(1.20)(816,340 \mathrm{psi})] /(8.422)^{2}=13,810.721 \mathrm{psi} \\
& \mathrm{~F}_{\mathrm{b}}=\mathrm{F}_{\mathrm{b}}\left(\mathrm{C}_{\mathrm{D}}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)=(2100 \mathrm{psi})(1.6)(0.8)(1.0)=2688 \mathrm{psi} \\
& \mathrm{~F}_{\mathrm{bE}} / \mathrm{F}_{\mathrm{b}}=(13810.721) /(2688)=5.1379 \\
& \left(1+\mathrm{F}_{\mathrm{bE}} / \mathrm{F}_{\mathrm{b}}{ }^{\mathrm{b}}\right) / 1.9=(1+5.1379) / 1.9=3.2305 \\
& \mathrm{C}_{\mathrm{L}}=\left[\left(1+\mathrm{F}_{\mathrm{bE}} / \mathrm{F}_{\mathrm{b}}\right) / 1.9\right]-\sqrt{ }\left\{\left[\left(1+\mathrm{F}_{\mathrm{bE}} / \mathrm{F}_{\mathrm{b}}\right) / 1.9\right]^{2}-\left[\mathrm{F}_{\mathrm{bE}} / \mathrm{F}_{\mathrm{b}} / 0.95\right]\right\} \\
& \left.\quad=3.2305-\sqrt{ }(3.2305)^{2}-(5.1379 / 0.95)\right]=0.9882
\end{aligned}
$$

For Southern Pine glulam:

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{V}}=\left(21^{\prime} / \mathrm{L}\right)^{1 / 20}\left(12^{\prime \prime} / \mathrm{d}\right)^{1 / 20}\left(5.125^{\prime} / \mathrm{b}\right)^{1 / 20} \leq 1.0 \\
& \mathrm{C}_{\mathrm{V}}=\left(21^{\prime} / 60^{\prime}\right)^{1 / 20}\left(12^{\prime \prime} / 11^{\prime \prime}\right)^{1 / 20}\left(5.125^{\prime \prime} / 6.75^{\prime \prime}\right)^{1 / 20} \leq 1.0 \\
& \mathrm{C}_{\mathrm{V}}=0.9400 \leq 1.0
\end{aligned}
$$

C_{V} governs of C_{L}
$\mathrm{F}_{\mathrm{b}}=\mathrm{F}^{*}{ }_{\mathrm{b}}\left(\mathrm{C}_{\mathrm{V}}\right)=(2688 \mathrm{psi})(0.9400)=2526.72 \mathrm{psi}$
Bending stress ratio $=\mathrm{f}_{\mathrm{b}} / \mathrm{F}_{\mathrm{b}}=(367.627 \mathrm{psi}) /(2526.72 \mathrm{psi})=0.1455$

Combined Stresses:

The bending moment is about the strong axis of the cross section, and the amplification for $\mathrm{P}-\Delta$ is measured by the column slenderness ratio about the x axis.
$\left(l_{\mathrm{e}} / \mathrm{d}\right)_{\text {bending moment }}=\left(1_{\mathrm{e}} / \mathrm{d}\right)_{\mathrm{x}}=7.2727$
$\mathrm{F}_{\mathrm{cEx}}=\left[0.822 \mathrm{E}^{\prime}{ }_{\text {min }}\right] /\left[\left(\mathrm{l}_{\mathrm{e}} / \mathrm{d}\right)_{\mathrm{x}}\right]^{2}=[(0.822)(816,340 \mathrm{psi})] /\left[(7.2727)^{2}\right]=12686.784 \mathrm{psi}$
*Here, $\left(l_{\mathrm{e}} / \mathrm{d}\right)$ is based on the axis about which the bending moment occurs.

Amplification factor $=1 /\left[1-\left(f_{c} / F_{c E x}\right)\right]=1 /[1-(341.751 \mathrm{psi} / 12686.784 \mathrm{psi})]=1.0277$
$\left(\mathrm{f}_{\mathrm{c}} / \mathrm{F}^{\prime}{ }_{\mathrm{c}}\right)^{2}+\left\{1 /\left[1-\left(\mathrm{f}_{\mathrm{c}} / \mathrm{F}_{\mathrm{cEx}}\right)\right]\right\}\left(\mathrm{f}_{\mathrm{b}} / \mathrm{F}^{\prime}{ }_{\mathrm{b}}\right)=(0.4084)^{2}+(1.0277)(0.1455)=0.3163<1.0 \therefore$ OK

Try 6 3/4" $\times 7 / 8$ "
$F_{c}=2300$ psi (Glulam ID \#50, S.P.) (p. 66 NDS Supplement)
$\mathrm{F}_{\mathrm{b}}=2100 \mathrm{psi}$ (Glulam ID \#50, S.P.) (p. 66 NDS Supplement)
$\mathrm{A}=46.41 \mathrm{in}^{2}$
$\mathrm{S}=53.17 \mathrm{in}^{3}$
$\mathrm{E}_{\text {min }}=980,000 \mathrm{psi}$
Axial Load: $\mathrm{P}_{\max }=25,375 \mathrm{lb}$ (Compression)
Maximum Moment: $\mathrm{M}_{\max }=50,034 \mathrm{in}-\mathrm{lb}$
$\mathrm{L}=6.667^{\prime}$

Axial Load:
$f_{c}=P / A=25,375 \mathrm{lb} / 46.41 \mathrm{in}^{2}=546.757 \mathrm{psi}$
$\left(\mathrm{l}_{\mathrm{e}} / \mathrm{d}\right)_{\mathrm{x}}=\left[\left(6.667^{\prime}\right)(12 \mathrm{in} / \mathrm{ft})\right] / 6.875^{\prime}=11.6364<50 \therefore$ OK
$\left(l_{\mathrm{e}} / \mathrm{d}\right)_{y}=\left[\left(13.333^{\prime}\right)(12 \mathrm{in} / \mathrm{ft})\right] / 6.75^{\prime \prime}=23.7037<50 \quad \therefore$ OK
$\left(l_{\mathrm{e}} / \mathrm{d}\right)_{\max }=\left(\mathrm{l}_{\mathrm{e}} / \mathrm{d}\right)_{\mathrm{x}}=23.7037$

The larger slenderness ratio governs the adjusted design value. Therefore, the weak axis of the member is critical, and $\left(l_{e} / d\right)_{y}$ is used to determine $F^{\prime}{ }_{c}$.
$\mathrm{F}_{\mathrm{cE}}=\left[0.822 \mathrm{E}_{\text {min }}\right] /\left[\left(1_{\mathrm{e}} / \mathrm{d}\right)^{2}\right]=[(0.822)(816,340 \mathrm{psi})] /\left[(27.7037)^{2}\right]=874.314 \mathrm{psi}$
Here, $1_{e} / d$ is based on $\left(l_{e} / d\right)_{\max }$.
$\mathrm{F}_{\mathrm{c}}{ }^{*}=\mathrm{F}_{\mathrm{c}}\left(\mathrm{C}_{\mathrm{D}}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)=(2300 \mathrm{psi})(1.6)(0.73)(1.0)=2686.4 \mathrm{psi}$
$\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}=874.314 / 2686.4=0.3255$
$\left[1+\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}\right] /(2 \mathrm{c})=[1+0.3255] /[(2)(0.9)]=0.7364$
$\mathrm{C}_{\mathrm{P}}=\left\{\left[1+\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}\right] /(2 \mathrm{c})\right\}-\sqrt{ }\left\{\left[\left(1+\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}\right) /(2 \mathrm{c})\right]^{2}-\left[\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}\right] / \mathrm{c}\right\}$
$=\{0.7364\}-\sqrt{ }\left\{[0.7364]^{2}-[0.3255 / 0.9]\right\}$

$$
=0.3115
$$

$\mathrm{F}^{\prime}{ }_{\mathrm{c}}=\mathrm{F}_{\mathrm{c}}{ }^{*}\left(\mathrm{C}_{\mathrm{P}}\right)=(2686.4 \mathrm{psi})(0.3115)=836.723 \mathrm{psi}$

Axial stress ratio $=\mathrm{f}_{\mathrm{c}} / \mathrm{F}^{\prime}{ }_{\mathrm{c}}=(546.757 \mathrm{psi}) /(836.723 \mathrm{psi})=0.6535$
Net Section Check:

Assume connections will be made with (2) rows of $3 / 4$ " diameter bolts.

Assume the hole diameter is $1 / 16$ " larger than the bolt (for stress calculations only).
$\mathrm{A}_{\mathrm{n}}=\left(6.75^{\prime \prime}\right)\left[6.875^{\prime \prime}-(2)\left(0.8125^{\prime \prime}\right)\right]=35.44 \mathrm{in}^{2}$
$\left(3 / 4 "+1 / 16^{\prime \prime}=0.8125^{\prime \prime}\right)$
$\mathrm{f}_{\mathrm{c}}=\mathrm{P} / \mathrm{A}_{\mathrm{n}}=25,375 \mathrm{lb} / 35.44 \mathrm{in}^{2}=715.999 \mathrm{psi}$
$\mathrm{F}^{\prime}{ }_{\mathrm{c}}=\mathrm{F}_{\mathrm{c}}{ }^{*}=\mathrm{F}_{\mathrm{c}}\left(\mathrm{C}_{\mathrm{D}}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)\left(\mathrm{C}_{\mathrm{P}}\right)=(2300 \mathrm{psi})(1.6)(0.73)(1.0)(0.3115)=836.814 \mathrm{psi}$
836.814 psi >715.999 psi \therefore OK

Bending:

Bending is about the strong axis of the cross section. The adjusted bending design value for a glulam is governed by the smaller of two criteria: volume effect or lateral stability.
$\mathrm{M}=50,034 \mathrm{in}-\mathrm{lb}$
$S=53.17 \mathrm{in}^{3}$
$\mathrm{f}_{\mathrm{b}}=\mathrm{M} / \mathrm{S}=50,034 \mathrm{in}-\mathrm{lb} / 53.17 \mathrm{in}^{3}=941.019 \mathrm{psi}$
$\mathrm{F}^{\prime}{ }_{\mathrm{b}}=\mathrm{F}_{\mathrm{b}}\left(\mathrm{C}_{\mathrm{D}}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)\left(\mathrm{C}_{\mathrm{L}}\right)$ or
$\mathrm{F}^{\prime}{ }_{\mathrm{b}}=\mathrm{F}_{\mathrm{b}}\left(\mathrm{C}_{\mathrm{D}}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)\left(\mathrm{C}_{\mathrm{V}}\right)$
For $C_{\mathrm{L}}: 1_{\mathrm{u}} / \mathrm{d}=\left[\left(13.333^{\prime}\right)(12 \mathrm{in} / \mathrm{ft})\right] / 6.875^{\prime \prime}=23.272>7$

$$
\begin{aligned}
& \therefore 1_{\mathrm{e}}=1.631_{\mathrm{u}}+3 \mathrm{~d}=(1.63)\left[\left(13.333^{\prime}\right)(12 \mathrm{in} / \mathrm{ft})\right]+(3)\left(6.875^{\prime \prime}\right)=281.425^{\prime \prime} \\
& \mathrm{R}_{\mathrm{B}}=\sqrt{ } 1_{\mathrm{e}} \mathrm{~d} / \mathrm{b}^{2}=\sqrt{ }\left[\left(281.425^{\prime \prime}\right)\left(6.875^{\prime \prime}\right) /\left(6.75^{\prime \prime}\right)^{2}\right]=6.516 \\
& \mathrm{~F}_{\mathrm{bE}}=1.20 \mathrm{E}^{\prime}{ }_{\min } / \mathrm{R}_{\mathrm{B}}^{2}=[(1.20)(816,340 \mathrm{psi})] /(6.516)^{2}=23,068.884 \mathrm{psi} \\
& \mathrm{~F}_{\mathrm{b}}=\mathrm{F}_{\mathrm{b}}\left(\mathrm{C}_{\mathrm{D}}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)=(2100 \mathrm{psi})(1.6)(0.8)(1.0)=2688 \mathrm{psi} \\
& \mathrm{~F}_{\mathrm{bE}} / \mathrm{F}_{\mathrm{b}}^{*}=(23068.884) /(2688)=8.5821
\end{aligned}
$$

$$
\begin{aligned}
(1 & \left.+\mathrm{F}_{\mathrm{bE}} / \mathrm{F} *_{\mathrm{b}}\right) / 1.9=(1+8.5821) / 1.9=5.0432 \\
\mathrm{C}_{\mathrm{L}} & =\left[\left(1+\mathrm{F}_{\mathrm{bE}} / \mathrm{F}_{\mathrm{b}}\right) / 1.9\right]-\sqrt{ }\left\{\left[\left(1+\mathrm{F}_{\mathrm{bE}} / \mathrm{F} *_{\mathrm{b}}\right) / 1.9\right]^{2}-\left[\mathrm{F}_{\mathrm{bE}} / \mathrm{F}{ }_{\mathrm{b}} / 0.95\right]\right\} \\
& \left.=5.0432-\sqrt{ }(5.0432)^{2}-(8.5821 / 0.95)\right]=0.9935
\end{aligned}
$$

For Southern Pine glulam:

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{V}}=\left(21^{\prime} / \mathrm{L}\right)^{1 / 20}\left(12^{\prime \prime} / \mathrm{d}\right)^{1 / 20}\left(5.125^{\prime \prime} / \mathrm{b}\right)^{1 / 20} \leq 1.0 \\
& \mathrm{C}_{\mathrm{V}}=\left(21^{\prime} / 60^{\prime}\right)^{1 / 20}\left(12^{\prime \prime} / 6.875^{\prime}\right)^{1 / 20}\left(5.125^{\prime} / 6.75^{\prime \prime}\right)^{1 / 20} \leq 1.0 \\
& \mathrm{C}_{\mathrm{V}}=0.9623 \leq 1.0
\end{aligned}
$$

C_{V} governs of C_{L}
$\mathrm{F}_{\mathrm{b}}=\mathrm{F}_{\mathrm{b}}\left(\mathrm{C}_{\mathrm{V}}\right)=(2688 \mathrm{psi})(0.9623)=2586.662 \mathrm{psi}$
Bending stress ratio $=\mathrm{f}_{\mathrm{b}} / \mathrm{F}_{\mathrm{b}}=(941.019 \mathrm{psi}) /(2586.662 \mathrm{psi})=0.3638$

Combined Stresses.

The bending moment is about the strong axis of the cross section, and the amplification for $\mathrm{P}-\Delta$ is measured by the column slenderness ratio about the x axis.
$\left(l_{\mathrm{e}} / \mathrm{d}\right)_{\text {bending moment }}=\left(l_{\mathrm{e}} / \mathrm{d}\right)_{\mathrm{x}}=11.6364$
$\mathrm{F}_{\mathrm{cEx}}=\left[0.822 \mathrm{E}^{\prime}{ }_{\text {min }}\right] /\left[\left(\mathrm{l}_{\mathrm{e}} / \mathrm{d}\right)_{\mathrm{x}}\right]^{2}=[(0.822)(816,340 \mathrm{psi})] /\left[(11.6364)^{2}\right]=4955.707 \mathrm{psi}$
*Here, $\left(l_{\mathrm{d}} / \mathrm{d}\right)$ is based on the axis about which the bending moment occurs.
Amplification factor $=1 /\left[1-\left(\mathrm{f}_{\mathrm{c}} / \mathrm{F}_{\mathrm{cEx}}\right)\right]=1 /[1-(546.757 \mathrm{psi} / 4955.707 \mathrm{psi})]=1.1240$
$\left(\mathrm{f}_{\mathrm{c}} / \mathrm{F}^{\prime}{ }_{\mathrm{c}}\right)^{2}+\left\{1 /\left[1-\left(\mathrm{f}_{\mathrm{c}} / \mathrm{F}_{\mathrm{cEx}}\right)\right]\right\}\left(\mathrm{f}_{\mathrm{b}} / \mathrm{F}^{\prime}{ }_{\mathrm{b}}\right)=(0.6535)^{2}+(1.1240)(0.3638)=0.8360<1.0 \therefore \mathbf{O K}$
FINAL MEMBER SIZE = 6 3/4" x 6 7/8" Southern Pine Glulam ID \#50

Overturning Check

Wood Braced Frame at Column Line 1:

Look at load combination: $0.9 \mathrm{D}+1.6 \mathrm{~W}$ (controlling load combination)
Tributary area for each frame $=\left(8^{\prime}\right)\left(130^{\prime} / 2\right)=520 \mathrm{SF}$
Wind uplift $=16.28 \mathrm{PSF}$

Upward/overturning force due to 1.6 W (applied lateral force)

$$
=36.71 \mathrm{k}(\text { from SAP model })
$$

Upward/overturning force due to wind uplift $=(1.6)(16.28 \mathrm{PSF})(520 \mathrm{SF}) / 1000=$

$$
=13.54 \mathrm{k}
$$

Total upward force at base $=36.71 \mathrm{k}+13.54 \mathrm{k}=50.25 \mathrm{k}$
Resistance is provided by applied dead load plus dead load of concrete footing and concrete pier.
Dead load applied to column $=21.34 \mathrm{k}($ from SAP model $)$
Footing: $\left[\left(19^{\prime}\right)\left(19^{\prime}\right)\left(2^{\prime}\right)\right](150 \mathrm{PCF}) / 1000=108.3 \mathrm{k}$
Pier: $\left[\left(9.667^{\prime}\right)\left(8.333^{\prime}\right)\left(10^{\prime}\right)\right](150$ PCF $) / 1000=106.3 \mathrm{k}$
These footing and pier sizes are from the original building, which had columns spaced at $30^{\prime}-0$ " o.c. at column line 1 . Since the design with the wood trusses has columns spaced at 8^{\prime} o.c., it will be assumed that the dead load of the footing and pier will be about one-quarter of that from the original design.

Footing $\cong(1 / 4)(108.3 \mathrm{k})=27.035 \mathrm{k}$
Pier $\cong(1 / 4)(106.3 k)=26.575 k$
Total resistance due to dead load $=(0.9)(21.34 \mathrm{k}+27.035 \mathrm{k}+26.575 \mathrm{k})=67.46 \mathrm{k}$
$67.46 \mathrm{k}>50.25 \mathrm{k} \therefore \mathrm{OK}$

The dead weight of the roof load plus the estimated self weight of the concrete footings and piers at this location was able to resist the upward forces caused by the overturning moments due to the wind loads. However, since the weight of the footings and piers is only an estimate, overturning will need to be investigated more closely using the final concrete footing and piers sizes. The applied live roof load was conservatively omitted from this check and would help resist overturning as well.

Concrete Moment Frame at Column Line 2 (North/South Direction):

Look at load combination: $0.9 \mathrm{D}+1.6 \mathrm{~W}$

Tributary area for each frame $=\left(32^{\prime}\right)\left(130^{\prime} / 2\right)=2080 \mathrm{SF}$

Wind uplift $=16.28 \mathrm{PSF}$

Upward/overturning force due to 1.6 W (applied lateral force)

$$
=(1.6)(11.43 \mathrm{k})=18.29 \mathrm{k}(\text { from SAP model })
$$

Upward/overturning force due to wind uplift $=(1.6)(16.28 \mathrm{PSF})(2080 \mathrm{SF}) / 1000=$

$$
=54.18 \mathrm{k}
$$

Total upward force at base $=18.29 \mathrm{k}+54.18 \mathrm{k}=72.47 \mathrm{k}$

Resistance is provided by applied dead load plus dead load of concrete column, concrete footing, and concrete pier.

Dead load applied to column $=130.28 \mathrm{k}($ from SAP model $)$

Resistance due to dead load $=(0.9)(130.28 \mathrm{k})=117.25 \mathrm{k}$
$117.25 \mathrm{k}>72.47 \mathrm{k} \therefore \mathrm{OK}$

The dead weight applied to the exterior column of the concrete moment frame at column line 2 was able to resist the overturning forces by itself. Therefore, there was no need to consider the self weight of the concrete column, concrete footing, and pier, which also help to resist the overturning moment. Hence, overturning is not a concern at the moment frame at column line 2.

Concrete Moment Frame in East/West Direction:

Look at load combination: $0.9 \mathrm{D}+1.6 \mathrm{~W}$ (controlling load combination)
Tributary area for each frame $=\left(32^{\prime}\right)\left(130^{\prime} / 2\right)=2080$ SF

Wind uplift $=16.28 \mathrm{PSF}$

Upward/overturning force due to 1.6 W (applied lateral force)

$$
=(1.6)(18.91 \mathrm{k})=30.26(\text { from SAP model })
$$

Upward/overturning force due to wind uplift $=(1.6)(16.28 \mathrm{PSF})(2080 \mathrm{SF}) / 1000=$

$$
=54.18 \mathrm{k}
$$

Total upward force at base $=30.26 \mathrm{k}+54.18 \mathrm{k}=84.44 \mathrm{k}$

Resistance is provided by applied dead load plus the self weight of the concrete footing and the concrete column.

Dead load applied to column $=30.59 \mathrm{k}$ (from SAP model)
Footing: $\left[\left(13.5^{\prime}\right)\left(13.5^{\prime}\right)\left(2.75^{\prime}\right)\right](150 \mathrm{PCF}) / 1000=75.18 \mathrm{k}$
Total resistance due to dead load $=(0.9)(30.59 \mathrm{k}+75.18 \mathrm{k})=95.19 \mathrm{k}$
$95.19 \mathrm{k}>84.44 \mathrm{k} \therefore \mathrm{OK}$

The applied dead load and self weight of the concrete footing can resist the overturning moment due to wind. The self weight of the column was conservatively not considered, but would assist in resisting overturning as well.

Wood Braced Frame in East/West Direction:

Look at load combination: $0.9 \mathrm{D}+1.6 \mathrm{~W}$ (controlling load combination)
Tributary area for each frame $=\left(26^{\prime}\right)\left(9.125^{\prime}\right)=237.25 \mathrm{SF}$
Wind uplift $=16.28 \mathrm{PSF}$
Upward/overturning force due to 1.6 W (applied lateral force)

$$
=(1.6)(17.55 \mathrm{k})=28.08 \mathrm{k}(\text { from SAP model })
$$

Upward/overturning force due to wind uplift $=(1.6)(16.28 \mathrm{PSF})(237.25 \mathrm{SF}) / 1000=$

$$
=6.18 \mathrm{k}
$$

Total upward force at base $=28.08 \mathrm{k}+6.18 \mathrm{k}=34.26 \mathrm{k}$
Resistance is provided by applied dead load plus the self weight of the concrete footing.
Dead load applied to column $=5.10 \mathrm{k}$
Footing: $\left[\left(5^{\prime}\right)\left(5^{\prime}\right)\left(1^{\prime}\right)\right](150$ PCF $) / 1000=3.75 \mathrm{k}$

Total resistance due to dead load $=(0.9)(5.10 \mathrm{k}+3.75 \mathrm{k})=8.00 \mathrm{k}$
$8.00 \mathrm{k}<34.26 \mathrm{k} \therefore$ N.G.

The applied dead load and self weight of the concrete footing cannot resist the overturning moment due to wind. Therefore, connections at the base of the column need to be investigated further (connections must be able to resist the uplift forces and hence prevent overturning).

Foundation Check

Concrete Moment Frame - Column Line 2

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{D}}=190.87 \mathrm{k} \\
& \mathrm{P}_{\mathrm{Lr}}=113.03 \mathrm{k} \\
& \mathrm{P}_{\mathrm{W}}=1.55 \mathrm{k} \\
& \mathrm{P}_{\mathrm{u}}=411.13 \mathrm{k}\left(1.2 \mathrm{D}+1.6 \mathrm{~L}_{\mathrm{r}}+0.8 \mathrm{~W}\right)+\text { Weight of Concrete Column } \\
& \quad\left[\left(24^{\prime \prime}\right)(24 ")\right] /\left(144 \mathrm{in}^{2} / \mathrm{ft}^{2}\right)=4 \mathrm{SF} \\
& \quad(4 \mathrm{SF})\left(40^{\prime}\right)=160 \mathrm{ft}^{3} \\
& \quad \text { Weight of Concrete Column }=\left(160 \mathrm{ft}^{3}\right)\left(150 \mathrm{lb} / \mathrm{ft}^{3}\right) / 1000=24 \mathrm{k} \\
& \mathrm{P}_{\mathrm{u}}=411.13 \mathrm{k}+(1.2)(24 \mathrm{k})=439.93 \mathrm{k} \\
& \mathrm{M}_{\mathrm{D}}=1.03 \mathrm{k}-\mathrm{ft} \\
& \mathrm{M}_{\mathrm{Lr}}=1.26 \mathrm{k}-\mathrm{ft} \\
& \mathrm{M}_{\mathrm{W}}=209.68 \mathrm{k}-\mathrm{ft} \\
& \mathrm{M}_{\mathrm{u}}=170.99 \mathrm{k}-\mathrm{ft}\left(1.2 \mathrm{D}+1.6 \mathrm{~L}_{\mathrm{r}}+0.8 \mathrm{~W}\right)
\end{aligned}
$$

Foundation Size: $15^{\prime}-0 "$ " $15^{\prime}-00^{\prime \prime} \times 2^{\prime}-9^{\prime \prime}$ with (17) \#7 bars each way, top and bottom
$\mathrm{q}_{\mathrm{a}}=2500 \mathrm{psf}$
$\mathrm{f}^{\prime}{ }_{\mathrm{c}}=4,000 \mathrm{psi}$
$\mathrm{P}=\mathrm{P}_{\mathrm{D}}+\mathrm{P}_{\mathrm{L}}+\mathrm{P}_{\mathrm{W}}=190.87 \mathrm{k}+113.03 \mathrm{k}+1.55 \mathrm{k}=305.45 \mathrm{k}$
$\mathrm{M}=\mathrm{M}_{\mathrm{D}}+\mathrm{M}_{\mathrm{Lr}}+\mathrm{M}_{\mathrm{W}}=1.03 \mathrm{k}-\mathrm{ft}+1.26 \mathrm{k}-\mathrm{ft}+209.68 \mathrm{k}-\mathrm{ft}=211.97 \mathrm{k}-\mathrm{ft}$
$\mathrm{M}=(\mathrm{P})(\mathrm{e})$
$211.97 \mathrm{k}-\mathrm{ft}=(305.45 \mathrm{k})(\mathrm{e})$
$e=0.694^{\prime}=8.328^{\prime \prime}$
$\mathrm{q}_{\mathrm{a}} \geq \mathrm{P} / \mathrm{A}+\mathrm{M} / \mathrm{S}$
$\mathrm{S}=\mathrm{bh}^{2} / 6$
$2.5 \geq=(305.45 \mathrm{k}) /\left[\left(15^{\prime}\right)\left(15^{\prime}\right)\right]+(211.97 \mathrm{k}-\mathrm{ft}) /\left[\left(15^{\prime}\right)\left(15^{\prime}\right)^{2} / 6\right]=1.358 \mathrm{ksf}+0.377 \mathrm{ksf}=1.734 \mathrm{ksf}$
$\therefore \mathrm{OK}$
$\mathrm{B} / 6=15^{\prime} / 6=2.5^{\prime}>\mathrm{e}=0.694^{\prime} \therefore$ In the kern (do not need to worry about overturning)
$L^{\prime}=\mathrm{L}-2 \mathrm{e}=15^{\prime}-(2)\left(0.694^{\prime}\right)=13.612^{\prime}$
$A^{\prime}=(B)\left(L^{\prime}\right)=\left(15^{\prime}\right)\left(13.612^{\prime}\right)=204.18 \mathrm{ft}^{2}$
$\mathrm{P} / \mathrm{A}^{\prime}=(305.45 \mathrm{k}) /\left(204.18 \mathrm{ft}^{2}\right)=1.496 \mathrm{ksf}<2.5 \mathrm{ksf}=\mathrm{q}_{\mathrm{a}} \therefore \mathrm{OK}$
$\sum \mathrm{M}=\left[(305.45 \mathrm{k})\left(15^{\prime} / 2\right)-211.97 \mathrm{k}-\mathrm{ft}\right]=+2078.91 \mathrm{k}-\mathrm{ft}(\therefore$ Stable since positive $)$

$$
\mathrm{M}_{\text {resisting }}=(305.45)\left(15^{\prime} / 2\right)=2290.88 \mathrm{k}-\mathrm{ft}
$$

$$
\mathrm{M}_{\text {overturning }}=211.97 \mathrm{k}-\mathrm{ft}
$$

$\mathrm{P}_{\mathrm{u}}=439.93 \mathrm{k}$
$\mathrm{M}_{\mathrm{u}}=170.99 \mathrm{k}-\mathrm{ft}$
$\mathrm{e}=\mathrm{M}_{\mathrm{u}} / \mathrm{P}_{\mathrm{u}}=(170.99 \mathrm{k}-\mathrm{ft}) /(439.93 \mathrm{k})=0.389^{\prime}=4.664^{\prime \prime}$
$L^{\prime}=\mathrm{L}-2 \mathrm{e}=15^{\prime}-(2)\left(0.346^{\prime}\right)=14.308^{\prime}$
$\mathrm{A}^{\prime}=(\mathrm{B})\left(\mathrm{L}^{\prime}\right)=\left(15^{\prime}\right)\left(14.31^{\prime}\right)=214.65 \mathrm{ft}^{2}$
$\mathrm{q}=\mathrm{P}_{\mathrm{u}} / \mathrm{A}^{\prime}=(439.93 \mathrm{k}) /\left(214.65 \mathrm{ft}^{2}\right)=2.050 \mathrm{ksf}$
Wide Beam Shear:
$\mathrm{V}_{\mathrm{u}}=(2.050 \mathrm{ksf})\left[\left[\left(15^{\prime}-2^{\prime}\right) / 2\right]-\mathrm{d} / 12\right]\left(1^{\prime}\right)=(0.75)(2) \sqrt{ } 4000\left(12^{\prime}\right)(\mathrm{d}) / 1000$
$13.325-0.1708 \mathrm{~d}=1.138 \mathrm{~d}$
$\mathrm{d} \geq 10.178^{\prime \prime}$
$\mathrm{d}_{\text {provided }}>10.178^{\prime \prime} \therefore \mathrm{OK}$
Punching Shear:
$\mathrm{v}_{\mathrm{c}}=\mathrm{P}_{\mathrm{u}} /\{[2 \mathrm{~d}(\mathrm{~b}+\mathrm{d})+2 \mathrm{~d}(\mathrm{c}+\mathrm{d})]\}$
$4 d^{2}+2 d(b+c)=P_{u} / v_{c}$
$\mathrm{v}_{\mathrm{c}}=\phi \mathrm{v}_{\mathrm{c}}=\phi(2+4 / \beta) \sqrt{ } \mathrm{f}^{\prime}{ }_{\mathrm{c}}=\phi(2+4 / 1) \sqrt{ } \mathrm{f}^{\prime}{ }_{\mathrm{c}}=\phi 6 \sqrt{ } \mathrm{f}^{\prime}{ }_{\mathrm{c}}$
$=\phi 4 \sqrt{ }{ }^{\prime}{ }^{\prime} \mathrm{c}=(0.75)(4) \sqrt{ } 4000=189.737 \mathrm{psi}$
$4 \mathrm{~d}^{2}+2 \mathrm{~d}(24 "+24 ")=(439,930 \mathrm{lb}) /(189.737 \mathrm{psi})$
$4 d^{2}+96 d-2318.63=0$
$\mathrm{d} \geq 14.90^{\prime \prime}$
With \#7 bars: $\mathrm{h}=14.90 "+3 "+0.875^{\prime \prime}=18.78 ">\mathrm{h}=33 " \therefore$ OK
Assume d $=33 "-3 "-(1 / 2)(0.875 ")=20.563 "$
Flexure:
$1=\left(15^{\prime}-2^{\prime}\right) / 2=6.5^{\prime}$
$\mathrm{M}=\mathrm{ql}^{2} / 2=(2.050 \mathrm{ksf})\left(6.5^{\prime}\right)^{2} / 2=43.31 \mathrm{k}-\mathrm{ft}$
$\mathrm{a}=\mathrm{A}_{\mathrm{s}} \mathrm{f}_{\mathrm{y}} / 0.85 \mathrm{f}^{\prime}{ }_{\mathrm{c}} \mathrm{b}=\left(\mathrm{A}_{\mathrm{s}}\right)(60 \mathrm{ksi}) /\left[(0.85)(4 \mathrm{ksi})\left(12^{\prime \prime}\right)\right]=1.471 \mathrm{~A}_{\mathrm{s}}$
$\phi \mathrm{M}_{\mathrm{n}}=\phi \mathrm{A}_{\mathrm{s}} \mathrm{f}_{\mathrm{y}}(\mathrm{d}-\mathrm{a} / 2)$
$(43.31 \mathrm{k}-\mathrm{ft})(12 \mathrm{in} / \mathrm{ft})=(0.9)\left(\mathrm{A}_{\mathrm{s}}\right)(60 \mathrm{ksi})\left(29.563 "-1.471 \mathrm{~A}_{\mathrm{s}} / 2\right)$
$519.72=1596.40 \mathrm{~A}_{\mathrm{s}}-39.717 \mathrm{~A}_{\mathrm{s}}{ }^{2}$
$39.717 \mathrm{~A}_{\mathrm{s}}{ }^{2}-1596.40 \mathrm{~A}_{\mathrm{s}}+519.72=0$
$\mathrm{A}_{\mathrm{s}} \geq 0.328 \mathrm{in}^{2} / \mathrm{ft}$
$\mathrm{A}_{\mathrm{s}, \mathrm{provided}}=(17)\left(0.60 \mathrm{in}^{2}\right) / 15^{\prime}=0.680 \mathrm{in}^{2} / \mathrm{ft}>0.328 \mathrm{in}^{2} / \mathrm{ft} \therefore \mathbf{O K}$

Appendix C - Glass Strength Calculations

1) Determination of the Load Resistance of a Solar-Control Low-E Insulating-Glass Unit

Location: South Façade, Enclosing Lobby Area

Outer Lite: $1 / 4$ " Fully Tempered (FT) Clear Float Glass, Monolithic

Inner Lite: $1 / 4 "$ Annealed Clear Float Glass, Monolithic

Air Space: $1 / 2 "$
Dimensions: $5^{\prime}-0 " \times 9^{\prime}-2 "=60^{\prime \prime} \times 110^{\prime \prime}$

Maximum Wind Pressure $=13.04 \mathrm{psf}$
NFL $=$ Non-Factored Load, GTF $=$ Glass Type Factor, LS $=$ Load Share Factor
LR $=$ Load Resistance

Assume an 8 in 1,000 breakage probability
Outer Lite (for Short Duration Load):

$$
\begin{aligned}
& \mathrm{NFL}= 1.18 \mathrm{kPa}(\text { Fig. A1.6, p. 12, E } 1300)=(1.8 \mathrm{kPa})(20.9 \mathrm{psf} / \mathrm{kPa})=24.662 \mathrm{psf} \\
& \text { Plate Length }=110 ", \text { Plate Width }=60 ", \text { Four Sides Simply Supported } \\
& \text { GTF }=3.8(\text { Table } 2, \text { p. } 2, \text { E } 1300, \text { Fully Tempered, Short Duration Load }) \\
& \mathrm{LS}= 2.00(\text { Table } 5, \text { p. } 5, \text { E } 1300) \\
& \mathrm{LR}=(\mathrm{NFL})(\mathrm{GTF})(\mathrm{LS})=(24.662 \mathrm{psf})(3.8)(2.00)=187.43 \mathrm{psf}
\end{aligned}
$$

Inner Lite (for Short Duration Load):

$$
\begin{aligned}
& \mathrm{NFL}=1.18 \mathrm{kPa}(\text { Fig. A1.6, p. 12, E } 1300)=(1.8 \mathrm{kPa})(20.9 \mathrm{psf} / \mathrm{kPa})=24.662 \mathrm{psf} \\
& \quad \text { Plate Length }=110 ", \text { Plate Width }=60 \prime, \text { Four Sides Simply Supported } \\
& \mathrm{GTF}=1.0(\text { Table } 2, \text { p. 2, E } 1300, \text { Annealed, Short Duration Load }) \\
& \mathrm{LS}=2.00(\text { Table } 5, \text { p. } 5, \text { E } 1300) \\
& \mathrm{LR}=(\mathrm{NFL})(\mathrm{GTF})(\mathrm{LS})=(24.662 \mathrm{psf})(1.0)(2.00)=49.32 \mathrm{psf}
\end{aligned}
$$

Outer Lite (for Long Duration Load):

$$
\mathrm{NFL}=1.18 \mathrm{kPa}(\text { Fig. A1.6, p. 12, E } 1300)=(1.8 \mathrm{kPa})(20.9 \mathrm{psf} / \mathrm{kPa})=24.662 \mathrm{psf}
$$

Plate Length $=110^{\prime \prime}$, Plate Width $=60^{\prime \prime}$, Four Sides Simply Supported GTF $=2.85$ (Table 3, p. 2, E 1300, Fully Tempered, Long Duration Load)
$\mathrm{LS}=2.00$ (Table 5, p. 5, E 1300)
$\mathrm{LR}=(\mathrm{NFL})(\mathrm{GTF})(\mathrm{LS})=(24.662 \mathrm{psf})(2.85)(2.00)=140.57 \mathrm{psf}$
Inner Lite (for Long Duration Load):
$\mathrm{NFL}=1.18 \mathrm{kPa}($ Fig. A1.6, p. 12, E 1300) $=(1.8 \mathrm{kPa})(20.9 \mathrm{psf} / \mathrm{kPa})=24.662 \mathrm{psf}$
Plate Length $=110$ ", Plate Width $=60$ ", Four Sides Simply Supported
GTF $=0.5$ (Table 3, p. 2, E 1300, Annealed, Long Duration Load)
LS $=2.00$ (Table 5, p. 5, E 1300)
$\mathrm{LR}=(\mathrm{NFL})(\mathrm{GTF})(\mathrm{LS})=(24.662 \mathrm{psf})(0.5)(2.00)=24.66 \mathrm{psf}($ Controls $)$
The load resistance of the IGU is 24.66 psf , being the least of the four values: $187.43,49.32$, 140.57 , or 24.66 psf

LR $=24.66 \mathrm{psf}>13.04 \mathrm{psf} \therefore$ OK

ASTM E-1300 Fig. A1. 6

TABLE 2 Glass Type Factors (GTF) for Insulating Glass (IG), Short Duration Load

Lite No. 1 Monolithic Glass or Laminated Glass Type	Lite No. 2					
	AN		HS		FT	
	GTF1	GTF2	GTF1	GTF2	GTF1	GTF2
AN	0.9	0.9	1.0	1.9	1.0	3.8
HS	1.9	1.0	1.8	1.8	1.9	3.8
FT	3.8	1.0	3.8	1.9	3.6	3.6

ASTM E 1300 - Table 2 - Glass Type Factors for Insulating Glass, Short Duration Load

$$
\text { E } 1300-04^{\epsilon 1}
$$

TABLE 5 Load Share (LS) Factors for Insulating Glass (IG) Units
Note 1-Lite No. 1 Monolithic glass, Lite No. 2 Monolithic glass, short or long duration load, or Lite No. 1 Monolithic glass, Lite No. 2 Laminated glass, short duration load only, or Lite No. 1 Laminated Glass, Lite No. 2 Laminated Glass, short or long duration load.

Lite No. 1		Lite No. 2																				
Monolithic Glass																						
Nominal Thickness		$\begin{gathered} 2.5 \\ (3 / 32) \end{gathered}$		$\begin{gathered} 2.7 \\ \text { (lami) } \end{gathered}$		$\begin{gathered} 3 \\ (1 / 8) \end{gathered}$		$\begin{gathered} 4 \\ (5 / 32) \end{gathered}$		$\begin{gathered} 5 \\ (3 / 18) \end{gathered}$		$\begin{gathered} \hline 6 \\ (1 / 4) \end{gathered}$		$\begin{gathered} 8 \\ (5 / 16) \end{gathered}$		$\begin{gathered} 10 \\ (3 / 8) \end{gathered}$		$\begin{gathered} 12 \\ (1 / 2) \end{gathered}$		$\begin{gathered} 16 \\ (5 / 8) \end{gathered}$		$\begin{gathered} \hline 19 \\ (3 / 4) \end{gathered}$
mm	(in.)	LS1	LS2	LS1 LS2																		
2.5	(3/32)	2.00	2.00	2.73	1.58	3.48	1.40	6.39	1.19	10.5	1.11	18.1	1.06	41.5	1.02	73.8	1.01	169.	1.01	344.	1.00	606. 1.00
2.7	(lami)	1.58	2.73	2.00	2.00	2.43	1.70	4.12	1.32	6.50	1.18	10.9	1.10	24.5	1.04	43.2	1.02	98.2	1.01	199.	1.01	351. 1.00
3	(1/8)	1.40	3.48	1.70	2.43	2.00	2.00	3.18	1.46	4.83	1.26	7.91	1.14	17.4	1.06	30.4	1.03	68.8	1.01	140.	1.01	245. 1.00
4	(5/32)	1.19	6.39	1.32	4.12	1.46	3.18	2.00	2.00	2.76	1.57	4.18	1.31	8.53	1.13	14.5	1.07	32.2	1.03	64.7	1.02	113. 1.01
5	(3/18)	1.11	10.5	1.18	6.50	1.26	4.83	1.57	2.76	2.00	2.00	2.80	4.00	5.27	1.23	8.67	1.13	18.7	1.06	37.1	1.03	64.71 .02
6	(1/4)	1.06	18.1	1.10	10.9	1.14	7.91	1.31	4.18	1.56	2.80	2.00	2.00	3.37	1.42	5.26	1.23	10.8	1.10	21.1	1.05	36.41 .03
8	(5/18)	1.02	41.5	1.04	24.5	1.06	17.4	1.13	8.53	1.23	5.27	1.42	3.31	2.00	2.00	2.80	1.56	5.14	1.24	9.46	1.12	15.91 .07
10	(3/8)	1.01	73.8	1.02	43.2	1.03	30.4	1.07	14.5	1.13	8.67	1.23	5.26	1.56	2.80	2.00	2.00	3.31	1.43	5.71	1.21	9.311 .12
12	(1/2)	1.01	169.	1.01	98.2	1.01	68.8	1.03	32.2	1.06	18.7	1.10	10.8	1.24	5.14	1.43	3.31	2.00	2.00	3.04	1.49	4.601 .28
16	(5/8)	1.00	344.	1.01	199.	1.01	140.	1.02	64.7	1.03	37.1	1.05	21.1	1.12	9.46	1.21	5.71	1.49	3.04	2.00	2.00	2.761 .57
19	(3/4)	1.00	606.	1.00	351.	1.00	245.	1.01	113.	1.02	64.7	1.03	36.4	1.07	15.9	1.12	9.31	1.28	4.60	1.57	2.76	2.002 .00

ASTM E 1300 - Table 5 - Load Share Factors for Insulating Glass Units
TABLE 3 Glass Type Factors (GTF) for Insulating Glass (IG), Long Duration Load

Lite No. 2
Lite No. 1 Monolithic Glass or Laminated Glass Type

Monolithic Glass or						
Laminated Glass Type	AN		HS		FT	
	GTF1	GTF2	GTF1	GTF2	GTF1	GTF2
AN	0.45	0.45	0.5	1.25	0.5	2.85
HS	1.25	0.5	1.25	1.25	1.25	2.85
FT	2.85	0.5	2.85	1.25	2.85	2.85

ASTM E 1300 - Table 3 - Glass Type Factors for Insulating Glass, Long Duration Load
2) Determination of the Load Resistance of a Solar-Control Low-E Insulating-Glass Unit

Location: East Façade, Enclosing Concessions Area

Outer Lite: 1/4" Fully Tempered (FT) Clear Float Glass, Monolithic

Inner Lite: $1 / 4 "$ Annealed Clear Float Glass, Monolithic

Air Space: $1 / 2 "$

Dimensions: $5^{\prime}-0 " \times 12^{\prime}-6 "=60 " \times 150 "$

Maximum Wind Pressure $=12.92 \mathrm{psf}$
NFL $=$ Non-Factored Load, GTF $=$ Glass Type Factor, LS $=$ Load Share Factor

LR $=$ Load Resistance

Assume an 8 in 1,000 breakage probability
Outer Lite (for Short Duration Load):
$\mathrm{NFL}=0.75 \mathrm{kPa}($ Fig. A1.6, p. 12, E 1300 $)=(0.75 \mathrm{kPa})(20.9 \mathrm{psf} / \mathrm{kPa})=15.675 \mathrm{psf}$
Plate Length $=150$ ", Plate Width $=60^{\prime \prime}$, Four Sides Simply Supported
GTF $=3.8$ (Table 2, p. 2, E 1300, Fully Tempered, Short Duration Load)
$\mathrm{LS}=2.00($ Table 5, p. 5, E 1300)
$\mathrm{LR}=(\mathrm{NFL})(\mathrm{GTF})(\mathrm{LS})=(15.675 \mathrm{psf})(3.8)(2.00)=119.13 \mathrm{psf}$
Inner Lite (for Short Duration Load):
$\mathrm{NFL}=0.75 \mathrm{kPa}($ Fig. A1.6, p. 12, E 1300 $)=(0.75 \mathrm{kPa})(20.9 \mathrm{psf} / \mathrm{kPa})=15.675 \mathrm{psf}$
Plate Length $=150$ ", Plate Width $=60^{\prime \prime}$, Four Sides Simply Supported
GTF $=1.0$ (Table 2, p. 2, E 1300, Annealed, Short Duration Load)
$\mathrm{LS}=2.00$ (Table 5, p. 5, E 1300)
$\mathrm{LR}=(\mathrm{NFL})(\mathrm{GTF})(\mathrm{LS})=(15.675 \mathrm{psf})(1.0)(2.00)=31.35 \mathrm{psf}$
Outer Lite (for Long Duration Load):

$$
\begin{aligned}
\mathrm{NFL}= & 0.75 \mathrm{kPa}(\text { Fig. A1.6, p. 12, E } 1300)=(0.75 \mathrm{kPa})(20.9 \mathrm{psf} / \mathrm{kPa})=15.675 \mathrm{psf} \\
& \text { Plate Length }=150 \text { ", Plate Width }=60^{\prime \prime}, \text { Four Sides Simply Supported }
\end{aligned}
$$

GTF $=2.85$ (Table 3, p. 2, E 1300, Fully Tempered, Short Duration Load)
$\mathrm{LS}=2.00($ Table 5, p. 5, E 1300)
$\mathrm{LR}=(\mathrm{NFL})(\mathrm{GTF})(\mathrm{LS})=(15.675 \mathrm{psf})(2.85)(2.00)=89.35 \mathrm{psf}$

Inner Lite (for Long Duration Load):
$\mathrm{NFL}=0.75 \mathrm{kPa}($ Fig. A1.6, p. 12, E 1300$)=(0.75 \mathrm{kPa})(20.9 \mathrm{psf} / \mathrm{kPa})=15.675 \mathrm{psf}$
Plate Length $=150$ ", Plate Width $=60 "$, Four Sides Simply Supported
$G T F=0.5($ Table 3, p. 2, E 1300, Annealed, Short Duration Load)
$\mathrm{LS}=2.00($ Table 5, p. 5, E 1300)
$\mathrm{LR}=(\mathrm{NFL})(\mathrm{GTF})(\mathrm{LS})=(15.675 \mathrm{psf})(0.5)(2.00)=15.675 \mathrm{psf}$
The load resistance of the IGU is 15.675 psf , being the least of the four values: $119.13,31.35$, 89.35 , or 15.675 psf
$\mathrm{LR}=15.675 \mathrm{psf}>12.92 \mathrm{psf} \therefore$ OK

Plate Length (in.)

See ASTM E-1300 Tables 2, 3, and 5 from \#1 (above)

